# 8. Curves in Polar Coordinates

We'll plot the graphs in this section using a computer. You'll also learn how to sketch some of them on paper because it helps you understand how graphs in polar coordinates work.

Don't worry about all the difficult-looking algebra in the second part of the answers - it's just there to demonstrate that polar coordinates are much simpler than rectangular coordinates for these graphs. We convert them using what we learned in the last section, Polar Coordinates.

Curves in polar coordinates work very similarly to vectors. See:

Vector concepts

### Need Graph Paper?

(Polar graph paper included.)

Sketch each of the following functions using polar coordinates, and then convert each to an equation in rectangular coordinates.

(1) r = 2 + 3 sin θ

(This polar graph is called a limacon from the Latin word for "snail".)

Here's another example of a limacon:

(2) r = 3 cos 2θ

(3) r = sin θ − 1

(This one is called a cardioid because it is heart-shaped. It is a special case of the limacon.)

(4) r = 2.5

(5) r = 0.2 θ

This is an interesting curve, called an Archimedean Spiral. As θ increases, so does r.

Later, we'll learn how to find the Length of an Archimedean Spiral.

(6) r = sin (2θ) − 1.7

This is the face I drew at the top of this page. We're not even going to try to find the equivalent in rectangular coordinates!

### Application

Check out Polar Coordinates and Cardioid Microphones for an application of polar coordinates.

### Online Algebra Solver

This algebra solver can solve a wide range of math problems. (Please be patient while it loads.)

### Math Lessons on DVD

Easy to understand math lessons on DVD. See samples before you commit.