**Domain: **The function

`f(t)=1/(t+2)`

is not defined for *t* =
-2, as this value would result in division by zero. (There would be a 0 on the bottom of the fraction.)

Hence the **domain** of *f*(*t*) is

"all real numbers except -2"

**Range: **No matter how large or small *t* becomes,
*f*(*t*) will never be equal to zero.

[**Why? **If we try to solve the equation for 0, this is what happens:

`0=1/(t+2)`

Multiply both sides by (*t* + 2) and we get

`0 = 1`

This is impossible.]

So the **range** of *f*(*t*) is

"all real numbers except zero".

We can see in the graph that the function is not defined for `t = -2` and that the function (the *y*-values) takes all values except `0`.

Domain: All `t ≠ -2`

Range: All `f(t) ≠ 0`