1. Applications of the Indefinite Integral

by M. Bourne

Displacement from Velocity, and Velocity from Acceleration

A very useful application of calculus is displacement, velocity and acceleration.

Recall (from Derivative as an Instantaneous Rate of Change) that we can find an expression for velocity by differentiating the expression for displacement:

`v=(ds)/(dt)`

Similarly, we can find the expression for the acceleration by differentiating the expression for velocity, and this is equivalent to finding the second derivative of the displacement:

`a=(dv)/dt=(d^2s)/(dt^2)`

It follows (since integration is the opposite process to differentiation) that to obtain the displacement, `s` of an object at time `t` (given the expression for velocity, `v`) we would use:

`s=intv\ dt`

Similarly, the velocity of an object at time `t` with acceleration `a`, is given by:

`v=inta\ dt`

Example 1

A proton moves in an electric field such that its acceleration (in cms-2) is

`a = -20(1+2t)^-2`, where `t` is in seconds.

Find the velocity as a function of time if v = 30 cms-1 when t = 0.

Example 2

A flare is ejected vertically upwards from the ground at 15 m/s. Find the height of the flare after 2.5 s.

Displacement and Velocity Formulas

Using integration, we can obtain the well-known expressions for displacement and velocity, given a constant acceleration a, initial displacement zero, and an initial velocity `v_0`:

`v=int a\ dt`

`v=at+K`

Since the velocity at `t=0` is `v_0`, we have `K=v_0`. So:

`v=v_0 + at`

Similarly, taking it another step gives:

`s=int v\ dt=int (v_0 + at)dt`

`s=v_0 t + (at^2)/2+C`

Since the displacement at `t=0` is `s=0`, we have `C=0`. So:

`s=v_0t+1/2at^2`

Voltage across a Capacitor

Definition: The current, i (amperes), in an electric circuit equals the time rate of change of the charge q, (in coulombs) that passes a given point in the circuit. We can write this (with t in seconds) as:

`i=(dq)/(dt)`

By writing i dt = dq and integrating, we have:

`q=inti\ dt`

The voltage, VC (in volts) across a capacitor with capacitance C (in farads) is given by

`V_C=q/C`

It follows that

`V_C=1/Cinti\ dt`

You can see some more advanced applications of this at Applications of Ordinary Differential Equations.

Example 3

The electric current (in mA) in a computer circuit as a function of time is `i = 0.3 − 0.2t`. What total charge passes a point in the circuit in `0.050` s?

Example 4

The voltage across an `8.50\ "nF"` capacitor in an FM receiver circuit is initially zero. Find the voltage after `2.00\ μ"s"` if a current `i=0.042t` (in `"mA"`) charges the capacitor.

Online Algebra Solver

This algebra solver can solve a wide range of math problems. (Please be patient while it loads.)

Calculus Lessons on DVD

 

Easy to understand calculus lessons on DVD. See samples before you commit.

More info: Calculus videos

The IntMath Newsletter

Sign up for the free IntMath Newsletter. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

Given name: * required

Family name:

email: * required

See the Interactive Mathematics spam guarantee.

Loading...
Loading...