## Quadratic formula by completing the square – easier method

[14 Feb 2011]

Most math text books derive the Quadratic Formula as follows:

To find the roots of a quadratic equation in the form

ax^{2}+bx+c= 0, follow these steps:(i) If

adoes not equal 1, divide each side bya(so that the coefficient of thex^{2}is 1).(ii) Rewrite the equation with the

constantterm on the right side.

(iii) Complete the square by adding the square of one-half of the coefficient of

x(this is the square ofb/2a) to both sides.(iv) Write the left side as a perfect square and simplify the right side.

(v) Equate and solve.

Now, that’s pretty messy since there is a lot going on.

### Alternative Derivation of Quadratic Formula

Here’s a simpler process.

Once again, we start with an equation in the form (and call it Equation [1]):

Multiply both sides by 4*a*:

Now, go back to the starting equation [1], find the coefficient of *x* (it’s *b*) and square it (we get *b*^{2}). Add that number to both sides of our equation:

Write the left side as a perfect square:

Solve for *x*:

I hope you find that easier to follow than the more common method (presented at top).

### Solving a quadratic equation using the alternative method of completing the square

**Question:** Solve the quadratic equation using completing the square:

**Answer:** In this example. *a* = 3, so 4*a* = 12. We multiply both sides by 12:

Add 48 to both sides:

Now, in the question, *b* = −2. We square this (*b*^{2} = 4) and add it to both sides:

Next, write the left side as a perfect square:

Solve for *x*:

What are your thoughts on this method? Is it easier for you?

[Hat tip to reader Lemmie, who sent me this method.]

14 Feb 2011 at 3:41 pm [Comment permalink]

This method was made popular around 1815 as the “Hindoo” method by Edward Strachey’s translation of the Bija Ganita by Bhaskara. It was known as early as the ninth century and called the “pulverizer”.

Some more complete history can be found in an article I wrote called Twenty Ways to Solve a Quadratic”.. Section six

14 Feb 2011 at 4:30 pm [Comment permalink]

Thanks for the extra background, Pat!

14 Feb 2011 at 11:33 pm [Comment permalink]

Thanks, Pat!

And James Tanton has 2 great videos which explain this method, at http://www.youtube.com/watch?v=OZNHYZXbLY8 and http://www.youtube.com/watch?v=bjH1HphOZ1Y.

I blogged about deriving the quadratic formula this way here: http://mathmamawrites.blogspot.com/2010/11/deriving-quadratic-formula-james.html

15 Feb 2011 at 8:54 am [Comment permalink]

Thanks for the video links, Sue.

Interesting post and comments, too!

15 Feb 2011 at 2:48 pm [Comment permalink]

[...] This post was mentioned on Twitter by Murray Bourne, Šime Šulji?. Šime Šulji? said: RT @intmath: New Blog Post: Quadratic formula by completing the square easier method http://ow.ly/1bkQct [...]

24 Feb 2011 at 10:15 am [Comment permalink]

excellent, but as I am mathematician, is there any theory related to the alternative ways?

1 Mar 2011 at 4:13 am [Comment permalink]

The alternative seems pretty straightforward and simple. What is the rationale behind multiplying by 4a?

1 Mar 2011 at 12:03 pm [Comment permalink]

@elayarajah0 and Hope: The “multiply by 4a” step is there to give us a perfect square (4a

^{2}x^{2}) in the first term.Similarly, the “+ b

^{2}” is there to give us a perfect square in the 3rd term.The result – all of the left hand side is a perfect square and can be easily factored.

8 Mar 2011 at 4:38 pm [Comment permalink]

I like the alternative method to solve the quadiratic equation. It makes to see that there exists different methods to solve quadratic equations. for its rationale, one has to search. we have not only to ask for every thing. We have also to add some thing to the problem as our own contribution. By the way I am also always try to find an alternative methods for solving different Mathematical entities and even try to formulate different mathematical rules. I may join you if possible

thank you.

8 Mar 2011 at 4:42 pm [Comment permalink]

@Jemal: It’s great that you try to solve things using alternative methods. This is a good way to really understand something – and to advance mathematics.

12 Mar 2011 at 10:44 pm [Comment permalink]

Thanks Murray

23 Apr 2011 at 1:06 pm [Comment permalink]

I like the first method best. As a high school math tutor I have completed the square and used the quadratic formula to solve for the zeros numerous times but have actually never had to derive the quadratic formula. I find this actually quite interesting and think I could use it as I tutor to help students bother remember how to complete the squares and memorize the quadratic formula. Thanks!

5 Jan 2012 at 12:13 am [Comment permalink]

it really helps me a lot considering that it is very hard to understand the first process or derivation. now, i understand how it works. thanks!