Skip to main content

4. Laplace Transforms of the Unit Step Function

We saw some of the following properties in the Table of Laplace Transforms.

Recall `u(t)` is the unit-step function.

1. ℒ`{u(t)}=1/s`

2. ℒ`{u(t-a)}=e^(-as)/s`

3. Time Displacement Theorem:

If `F(s)=` ℒ`{f(t)}` then ℒ`{u(t-a)*g(t-a)}=e^(-as)G(s)`

[You can see what the left hand side of this expression means in the section Products Involving Unit Step Functions.]

Continues below


Sketch the following functions and obtain their Laplace transforms:

(a) `f(t)={ {: (0,t < a), (A, a < t < b), (0, t > b) :}`

Assume the constants a, b, and A are positive, with a < b.


The function has value A between t = a and t = b only.

Graph of `f(t)=A*[u(t-a)-u(t-b)]`.

We write the function using the rectangular pulse formula.


We use `Lap{u(t-a)}=(e^(-as))/s`

We also use the linearity property since there are 2 items in our function.


Get the Daily Math Tweet!
IntMath on Twitter

(b) `f(t)={ {: (0,t < a), (e^(t-a), a < t < b), (0, t > b) :}`

Assume the constants a and b are positive, with a < b.


Our function is `f(t)=e^(t-a)`. This is an exponential function (see Graphs of Exponential Functions).

When `t = a`, the graph has value `e^(a-a)= e^0= 1`.

t f(t) a b 1

Graph of `f(t)=e^(t-a)*{u(t-a)-u(t-b)}`.

The function has the form:


We will use the Time Displacement Theorem:


Now, in this example, `G(s)=` `Lap{e^t}=1/(s-1)`


`=` `Lap{e^(t-a)*u(t-a)-e^(t-a)*u(t-b)}`

We now make use of a trick, by noting `(t-a) = (b-a ) + (t-b)` and re-writing `e^(t-a)` as `e^(b-a)e^(t-b)`:

`= Lap{e^(t-a)*u(t-a)` `{:-e^(b-a)e^(t-b)*u(t-b)}`

[We have introduced eb−a, a constant, for convenience.]

`=` `Lap{e^(t-a)*u(t-a)}-` `e^(b-a)Lap{e^(t-b)*u(t-b)}`

[Each part is now in the form `u(t − c) · g(t − c)`, so we can apply the Time Displacement Theorem.]

`=e^(-as)xx1/(s-1)` `-e^(b-a)xxe^(-bs)xx1/(s-1)`



Please support IntMath!

(c) `f(t)={ {: (0,t < 0), (sin\ t, 0 < t < pi), (0, t > pi) :}`


Here is the graph of our function.

Graph of `f(t) = sin t * [u(t) − u(t − π)]`.

The function can be described using Unit Step Functions, since the signal is turned on at `t = 0` and turned off at `t=pi`, as follows:

`f(t) = sin t * [u(t) − u(t − π)]`

Now for the Laplace Transform:

`Lap{sin\ t * [u(t)-u(t-pi)]}` `=` `Lap{sin\ t * u(t)}- ` `Lap{sin\ t * u(t - pi)}`

Now, we need to express the second term all in terms of `(t - pi)`.

From trigonometry, we have:

`sin(t − π) = -sin\ t`

So we can write:

`Lap{sin\ t * u(t)}- ` `Lap{sin\ t * u(t - pi)}`

`= ` `Lap{sin\ t * u(t)}+ ` `Lap{sin(t - pi)* u(t - pi)}`




Search IntMath, blog and Forum

Search IntMath

Online Algebra Solver

This algebra solver can solve a wide range of math problems.

Calculus Lessons on DVD

Math videos by

Easy to understand calculus lessons on DVD. See samples before you commit.

More info: Calculus videos

The IntMath Newsletter

Sign up for the free IntMath Newsletter. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

See the Interactive Mathematics spam guarantee.