3. Graphs of y = a sin(bx + c) and y = a cos(bx + c)

by M. Bourne

Phase shift Interactives...

Later on this page:

Phase shift interactive

Amplitude, period and phase shift interactive

In this section, we meet the following 2 graph types:

y = a sin(bx + c)


y = a cos(bx + c)

Both b and c in these graphs affect the phase shift (or displacement), given by:

`text(Phase shift)=(-c)/b`

The phase shift is the amount that the curve is moved in a horizontal direction from its normal position. The displacement will be to the left if the phase shift is negative, and to the right if the phase shift is positive.

There is nothing magic about this formula. We are just solving the expression in brackets for zero; `bx + c = 0`.

Continues below

Example 1

Need Graph Paper?

rectangular grid
Download graph paper

Sketch the curve

y = sin(2x + 1)

Example 2



Phase shift Interactive

In the following interactive, use the slider to change the value of c, which displaces the curve. Observe the "c" and "displacement" values and how they change when you move the curve left and right.

The example you see is `y=sin(pi t)`. This has period given by `(2 pi)/b = (2π)/π = 2`.

You can also see the cosine case by choosing it at the top.

Choose graph type:

Sine Cosine

Guide curve:

On Off

Graph: `y=sin(pi t - 0)`

Displacement = `(-c)/b = 0/pi = 0`

Copyright © www.intmath.com

Phase Angle or Phase Shift?

Phase angle is not always defined the same as phase shift.

The phase angle for the sine curve y = a sin(bx + c) is usually taken to be the value of c and the phase shift is usually given by `-c/b`, as we saw above.

Reminder: In the last section, we saw how to express sine curves in terms of frequency.

Example: Electronics engineers separate the terms "phase angle" and "phase shift", and they use a mix of radians and degrees. We may have a current expressed as follows:

I = 50 sin (2π(100)t + 30°)

This means the amplitude is `50\ "A"`, the frequency is `100\ "Hz"` and the phase angle is`30°`.

See an application of phase angle at An Application to AC Circuits in the complex numbers chapter.

Also, see a discussion on this issue at Phase shift or phase angle? in the math blog.

To keep things simple for now, we will mostly use the term phase shift in this chapter.

Amplitude, period and phase shift graph applet

The following interactive will help you to explore the three key concepts when drawing trigonometric graphs - amplitude, period and phase shift.

Use the sliders under the graph to vary each of the amplitude, period and phase shift of the graph.

The `x`-axis has an integer scale (it's radians, of course), and multiples of `pi` are indicated with a red stroke.

You can also change the function to cosine. Hopefully you can see the concepts work the same for both sine and cosine curves.

Choose graph type:

Sine Cosine

Guide curve:

On Off

Graph: `y=a sin(bx + c)=` `sin(x)`

Period = `(2pi)/b = 6.28/1 = 6.28`

Displacement = `(-c)/b = 0/1 = 0`

Copyright © www.intmath.com


Sketch the graph of the following.

1. `y = sin(2x + π/6)`

2. `y = 3 sin(x + π/4)`

3. `y = 2 cos(x - π/8)`

4. `y = -cos(2x - π)`


Search IntMath, blog and Forum

Online Algebra Solver

This algebra solver can solve a wide range of math problems.

Trigonometry Lessons on DVD


Easy to understand trigonometry lessons on DVD. See samples before you commit.

More info: Trigonometry videos

The IntMath Newsletter

Sign up for the free IntMath Newsletter. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

Given name: * required

Family name:

email: * required

See the Interactive Mathematics spam guarantee.