# 5. Applications of Trigonometric Graphs

by M. Bourne

Oscilloscope output - Filter modulation [Image source: Mikael Altemark]

## Simple Harmonic Motion

Any object moving with constant angular velocity or moving up and down with a regular motion can be described in terms of SIMPLE HARMONIC MOTION.

The displacement, *d*, of an object moving with SHM, is
given by:

d=Rsinωt

where R is the radius of the rotating object and `ω` is the angular velocity of the object.

For an animation of this concept, go back to: **sin animation**.

**NOTE:** We may need to use one the following,
depending on the situation:

### Need Graph Paper?

d=Rcosωt

d=Rsin (ωt+α)

d=Rcos (ωt+α)

### Example 1

A point on a cam is `8.30\ "cm"` from the centre of
rotation. Sketch 2 cycles of *d* as a function
of *t*, given that *d *= 0 cm when *t* = 0 s and *ω* = 3.20
rad/s.

Answer

Since *d* = *R* sin *ω**t*, we have

d= 8.30 sin 3.20t.

This sine curve will have amplitude `8.30` and period given by

`"Period"=(2pi)/b=(2pi)/3.20=1.96`

So the sketch will be:

Please support IntMath!

### Example 2

The voltage of an alternating current circuit is given by

e=Ecos(ωt+α).

Sketch 2 cycles of the voltage as a function of time if

`E = 80\ "V"`, ` ω = 377\ "rad/s"` and `α = π/2`.

Answer

We need to sketch:

e=Ecos(ωt+α)

e= 80 cos(377t+π/2)

This will have **amplitude** = `80`,

**period** `=(2pi)/377=0.0167` and

**phase shift** `= -c/b = -(π/2)/377 =
-0.00417`

So our sketch is:

### Example 3

The signal received by a radio is given by

e= 0.014 cos(2πft),

where *e *is in volts and
*f* is in Hz.

Draw 2 cycles of *e *for
`f = 950\ "kHz"`.

Answer

Now, `f = 950 000`.

We need to find the **wavelength** to be able to draw 2
cycles.

We have: *b *= 2*πf* and we know that

`"Period" ` `=(2pi)/b=(2pi)/(2pixx950000) ` `=1.053xx10^(-6)`

So 2 wavelengths will be: `2xx1.053xx10^-6=2.105xx10^-6`

So, graphing for `0 < t < 2.105 xx 10^-6`, we have:

Graph of *e* = 0.014 cos(2π ×950000*t*). Units for *t* are 10^{-6} s

Get the Daily Math Tweet!

IntMath on Twitter

## Angular Velocity

Another important result in this section is:

The **angular velocity** **ω** (in radians per second)
of a rotating object, is given by:

ω= 2πf

where *f* is the frequency of the motion, in cycles per
second.

### Exercises

1. A satellite is orbiting the earth so that its displacement
*D* north of the equator is given by

D=Asin(ωt+α).

Sketch 2 cycles of *D* as a function of *t* if

`A = 500\ "km"`, `ω = 3.60\ "rad/hr"` and ` α = 0`.

Answer

So we need to sketch: *D *= 500 sin(3.6*t*)

**Note:** Be careful with **units**! If frequency is in cycles
per minute, then the angular velocity will be in radians per
minute. Also, be careful with "kilo".

Get the Daily Math Tweet!

IntMath on Twitter

2. Using *e *= *E *cos(*ω**t* + *α*), sketch 2 cycles of the voltage as a
function of time if

E= 170 V,ω= 120πrad/s and `α = -π/3`.

Answer

So `e = 170 cos (120πt - π/3)`

Amplitude is `170\ "V"`.

`"Period"` ` = (2π)/b = (2π)/(120π)` ` =1/60` ` = 0.016667 ``"Phase shift"` ` = -c/b = - (-π/3)/(120π)` ` = 1/360` ` = 0.0027778`

So our cosine curve will be shifted to the right by approximately `0.0028` seconds.

Get the Daily Math Tweet!

IntMath on Twitter

### Search IntMath, blog and Forum

### Online Trigonometry Solver

This trigonometry solver can solve a wide range of math problems.

Go to: Online algebra solver

### Trigonometry Lessons on DVD

Math videos by MathTutorDVD.com

Easy to understand trigonometry lessons on DVD. See samples before you commit.

More info: Trigonometry videos

### The IntMath Newsletter

Sign up for the free **IntMath Newsletter**. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!