Skip to main content
Search IntMath

Table of Laplace Transformations

The following Table of Laplace Transforms is very useful when solving problems in science and engineering that require Laplace transform.

Each expression in the right hand column (the Laplace Transforms) comes from finding the infinite integral that we saw in the Definition of a Laplace Transform section.

Time Function `f(t)` 
`f(t)=` `Lap^{:-1:}{F(s)}`
Laplace Transform of `f(t)`
`F(s)=` `Lap{f(t)}`
1 `1/s` `s > 0`
t (unit-ramp function) `1/s^2` `s > 0`
tn (n, a positive integer) `(n!)/s^(n+1)` `s > 0`
eat `1/(s-a)` `s > a`
sin ωt `omega/(s^2+omega^2)` `s > 0`
cos ωt `s/(s^2+omega^2)` `s > 0`
tng(t), for n = 1, 2, ... `(-1)^n (d^nG(s))/(ds^n)`
t sin ωt `(2omegas)/((s^2+omega^2)^2)` `s > |ω|`
t cos ωt `(s^2-omega^2)/((s^2+omega^2)^2)` `s > |ω|`
`g(at)` `1/a G (s/a)`   Scale property
`e^(at)g(t)` `G(s − a)`   Shift property
eattn, for n = 1, 2, ... `(n!)/((s-a)^[n+1])` `s > a`
te-t `(1)/((s+1)^2)` `s > -1`
`1 − e^(-t"/"T)` `(1)/(s(1+Ts))` `s > -1/T`
eatsin ωt `(omega)/((s-a)^2+omega^2)` `s > a`
eatcos ωt `(s-a)/((s-a)^2+omega^2)` `s > a`
`u(t)` `1/s` `s > 0`
`u(t − a)` `(e^[-as])/(s)` `s > 0`
`u(t − a) ·` ` g(t − a)` e-asG(s) Time-displacement theorem
g'(t) `sG(s) − g(0)`
g''(t) `s^2 · G(s)` ` − s · g(0) ` ` − g'(0)`
g(n)(t) `s^n · G(s) ` `− s^(n-1) · g(0) ` `− s^(n-2) · g'(0) −` ` ... − g^(n-1)(0)`
`int_0^t g(t) \ dt` `(G(s))/(s)`
`int g(t)\ dt` `(G(s))/(s)+` `1/s{intg(t) \ dt}_[t=0]`

In the following sections we see how to use the Table of Laplace Transformations to solve problems.

Problem Solver

AI Math Calculator Reviews

This tool combines the power of mathematical computation engine that excels at solving mathematical formulas with the power of GPT large language models to parse and generate natural language. This creates math problem solver thats more accurate than ChatGPT, more flexible than a calculator, and faster answers than a human tutor. Learn More.

Tips, tricks, lessons, and tutoring to help reduce test anxiety and move to the top of the class.