5. Laplace Transform of a Periodic Function f(t)

If function f(t) is:

Periodic with period p > 0, so that f(t + p) = f(t), and

f1(t) is one period (i.e. one cycle) of the function, written using Unit Step functions,


`Lap{f(t)}= Lap{f_1(t)}xx 1/(1-e^(-sp))`

NOTE: In English, the formula says:

The Laplace Transform of the periodic function f(t) with period p, equals the Laplace Transform of one cycle of the function, divided by `(1-e^(-sp))`.


Find the Laplace transforms of the periodic functions shown below:


Graph of periodic unit ramp function.


From the graph, we see that the first period is given by:

`f_1(t)=t*[u(t)-u(t-1)]` and that the period is `p=2`.


`= Lap{t*[(u(t)-u(t-1)]}`

`= Lap{t*u(t)}- Lap{t*u(t-1)}`


`t*u(t-1)` `=(t-1)*u(t-1)+u(t-1)`


`Lap{t*u(t)}- Lap{t*u(t-1)}`

`= Lap{t*u(t)}-` ` Lap{(t-1)*u(t-1)+u(t-1)}`

`= Lap{t*u(t)}- ` `Lap{(t-1)*u(t-1)}-` ` Lap{u(t-1)}`



Hence, the Laplace transform of the periodic function, f(t) is given by:

`Lap{f(t)}` `=((1-e^(-s)-se^(-s))/s^2)xx1/(1-e^(-2s))`


Get the Daily Math Tweet!
IntMath on Twitter

(b) Saw-tooth waveform:

Graph of saw-tooth waveform.


We can see from the graph that


and that the period is `p = b`.

So we have


`= Lap{a/bt*[u(t)-u(t-b)]}`

`=a/b Lap{t*u(t)-t*u(t-b)}`

(We next subtract, then add a "`b`" term in the middle, to achieve the required form.)

`=a/b Lap{t*u(t)-` `{:(t-b+b)*u(t-b)}`

`=a/b Lap{t*u(t)-` `(t-b)*u(t-b) -` `{: b*u(t-b)}`

(We now find the Laplace Transform of the individual pieces.)

`=a/b[ Lap{t*u(t)}-` ` Lap{(t-b)*u(t-b)}-` `{: Lap{b*u(t-b)}{:]`



So the Laplace Transform of the periodic function is given by

`Lap{f(t)}` `=(a(1-e^(-bs)-bse^(-bs))) / (bs^2(1-e^(-bs))`

(c) Full-wave rectification of sin t:

Graph of `f(t)=sin t*{u(t)-u(t-pi)}`, with period `pi`.



`f_1(t)=sin t*{u(t)-u(t-pi)}`

and the period, `p=pi`.


`= Lap{sin\ t*(u(t)-u(t-pi))}`

`= Lap{sin t*u(t)}+` ` Lap{sin(t-pi)*u(t-pi)}`



So the Laplace Transform of the periodic function is given by:


Easy to understand math videos: