Type |
See |
+ |
`+` |
- |
`-` |
* |
`*` |
** |
`**` |
// |
`//` |
\\ |
`\ |
xx |
`xx` |
-: |
`-:` |
@ |
`@` |
o+ |
`o+` |
ox |
`ox` |
o. |
`o.` |
sum |
`sum` |
prod |
`prod` |
^^ |
`^^` |
^^^ |
`^^^` |
vv |
`vv` |
vvv |
`vvv` |
nn |
`nn` |
nnn |
`nnn` |
uu |
`uu` |
uuu |
`uuu` |
|
Type |
See |
sin |
sin |
cos |
cos |
tan |
tan |
csc |
csc |
sec |
sec |
cot |
cot |
sinh |
sinh |
cosh |
cosh |
tanh |
tanh |
log |
log |
ln |
ln |
det |
det |
dim |
dim |
lim |
lim |
mod |
mod |
gcd |
gcd |
lcm |
lcm |
min |
min |
max |
max |
|
Type |
See |
( |
( |
) |
) |
[ |
[ |
] |
] |
{ |
{ |
} |
} |
(: |
⟨ |
:) |
⟩ |
{: |
|
:} |
|
Type |
See |
and |
`and` |
or |
`or` |
not |
`not` |
=> |
`=>` |
if |
`if` |
iff |
`iff` |
AA |
`AA` |
EE |
`EE` |
_|_ |
`_|_` |
TT |
`TT` |
|-- |
`|--` |
|== |
`|==` |
|
Type |
See |
hat x |
`hat x` |
bar x |
`bar x` |
ul x |
`ul x` |
vec x |
`vec x` |
dot x |
`dot x` |
ddot x |
`ddot x` |
Type |
See |
uarr |
`uarr` |
darr |
`darr` |
rarr |
`rarr` |
-> |
`->` |
|-> |
`|->` |
larr |
`larr` |
harr |
`harr` |
rArr |
`rArr` |
lArr |
`lArr` |
hArr |
`hArr` |
In this next table, all items are in the order:
Type this |
See that |
Comment |
x^2+y_1+z_12^34 |
`x^2+y_1+z_12^34` |
subscripts as in TeX, but numbers are treated as a unit |
sin^-1(x) |
`sin^-1(x)` |
function names are treated as constants |
d/dxf(x) = lim_(h->0)(f(x+h)-f(x))/h |
`d/dxf(x)=lim_(h->0)(f(x+h)-f(x))/h` |
complex subscripts are bracketed, displayed under lim |
f(x) = sum_(n=0)^oo (f^((n))(a))/(n!)(x-a)^n |
`f(x)=sum_(n=0)^oo(f^((n))(a))/(n!)(x-a)^n` |
f^((n))(a) must be bracketed, else the numerator is only `a` |
int_0^1f(x)dx |
`int_0^1f(x)dx` |
subscripts must come before superscripts |
[[a,b],[c,d]]((n),(k)) |
`[[a,b],[c,d]]((n),(k))` |
matrices and column vectors are simple to type |
x/x = {(1,if x!=0),(text{undefined},if x=0):} |
`x/x={(1,if x!=0),(text{undefined},if x=0):}` |
piecewise defined functions are based on matrix notation |
a//b |
`a//b` |
use // for inline fractions |
(a/b)/(c/d) |
`(a/b)/(c/d)` |
with brackets, multiple fraction work as expected |
a/b/c/d |
`a/b/c/d` |
without brackets the parser chooses this particular expression |
((a*b))/c |
`((a*b))/c` |
only one level of brackets is removed; * gives standard product |
sqrt sqrt root3x |
`sqrt sqrt root3x` |
spaces are optional, only serve to split strings that should not match |
<< a,b >> and {:(x,y),(u,v):} |
`<< a,b >> and {:(x,y),(u,v):}` |
angle brackets and invisible brackets |
(a,b]={x in RR | a < x <= b} |
`(a,b]={x in RR | a < x <= b}` |
grouping brackets don't have to match |
abc-123.45^-1.1 |
`abc-123.45^-1.1` |
non-tokens are split into single characters,
but decimal numbers are parsed with possible sign |
hat(ab) bar(xy) ulA vec v dotx ddot y |
`hat(ab) bar(xy) ulA vec v dotx ddot y` |
accents can be used on any expression (work well in IE) |
bb{AB3}.bbb(AB]. cc(AB).fr{AB}.tt[AB].sf(AB) |
`bb{AB3}.bbb(AB].cc(AB).fr{AB}.tt[AB].sf(AB)` |
font commands; can use any brackets around argument |
\stackrel"def"= or \stackrel{\Delta}{=}" "("or ":=) |
`\stackrel"def"= or \stackrel{\Delta}{=}" "("or ":=)` |
symbols can be stacked |
{::}_(\ 92)^238U |
`{::}_(\ 92)^238U` |
prescripts simulated by subsuperscripts |
Tables courtesy the author of ASCIIMathML: Peter Jipsen, Chapman University.
Problem Solver
This tool combines the power of mathematical computation engine that excels at solving mathematical formulas with the power of GPT large language models to parse and generate natural language. This creates math problem solver thats more accurate than ChatGPT, more flexible than a calculator, and faster answers than a human tutor. Learn More.
Tips, tricks, lessons, and tutoring to help reduce test anxiety and move to the top of the class.
|