Search IntMath
Close

450+ Math Lessons written by Math Professors and Teachers

5 Million+ Students Helped Each Year

1200+ Articles Written by Math Educators and Enthusiasts

Simplifying and Teaching Math for Over 23 Years

# Syntax for entering math using ASCIIMathML

ASCIIMathML is an easy way to enter math in Web pages. It is used throughout IntMath.com. The math is rendered using KaTeX.

This is what you can use when sending a math mail using the IntMath mail system.

Type See Greek letters (lower case) alpha α beta β gamma γ delta δ epsilon ε varepsilon ϵ zeta ζ eta η theta θ vartheta ϑ iota ι kappa κ lambda λ mu μ nu ν xi ξ omicron ο pi π rho ρ sigma σ tau τ upsilon υ phi φ varphi ϕ chi χ psi ψ omega ω
Type See Greek letters (upper case) A A B B Gamma Γ Delta Δ E E Z Z H H Theta Θ I I K K Lambda Λ M M N N Xi Ξ O Ο Pi Π P R Sigma Σ T T Y Y Phi Φ X X Psi Ψ Omega Ω
Type See Relation symbols = = != ≠ < < > > <= ≤ >= ≥ -< ≺ >- ≻ in ∈ !in ∉ sub ⊂ sup ⊃ sube ⊆ supe ⊇ -= ≡ ~= ≅ ~~ ≈ prop ∝
Type See Font commands bb A bb A bbb A bbb A cc A cc A tt A tt A fr A fr A sf A sf A
Type See Miscellaneous symbols int int oint oint del del grad grad +- +- O/ O/ oo oo aleph aleph /_ /_ :. :. |...| |...| |cdots| |cdots| vdots vdots ddots ddots |\ | || |quad| |quad| diamond diamond |__ |__ __| __| |~ |~ ~| ~| CC CC NN NN QQ QQ RR RR ZZ ZZ
Type See Operation symbols + + - - * * ** ** // // \\ \ xx xx -: -: @ @ o+ o+ ox ox o. o. sum sum prod prod ^^ ^^ ^^^ ^^^ vv vv vvv vvv nn nn nnn nnn uu uu uuu uuu
Type See Standard functions sin sin cos cos tan tan csc csc sec sec cot cot sinh sinh cosh cosh tanh tanh log log ln ln det det dim dim lim lim mod mod gcd gcd lcm lcm min min max max
Type See Grouping brackets ( ( ) ) [ [ ] ] { { } } (: ⟨ :) ⟩ {: :}
Type See Logical symbols and and or or not not => => if if iff iff AA AA EE EE _|_ _|_ TT TT |-- |-- |== |==
Type See Accents hat x hat x bar x bar x ul x ul x vec x vec x dot x dot x ddot x ddot x
Type See Arrows uarr uarr darr darr rarr rarr -> -> |-> |-> larr larr harr harr rArr rArr lArr lArr hArr hArr

In this next table, all items are in the order:

Type this See that Comment
x^2+y_1+z_12^34 x^2+y_1+z_12^34 subscripts as in TeX, but numbers are treated as a unit
sin^-1(x) sin^-1(x) function names are treated as constants
d/dxf(x) = lim_(h->0)(f(x+h)-f(x))/h d/dxf(x)=lim_(h->0)(f(x+h)-f(x))/h complex subscripts are bracketed, displayed under lim
f(x) = sum_(n=0)^oo (f^((n))(a))/(n!)(x-a)^n f(x)=sum_(n=0)^oo(f^((n))(a))/(n!)(x-a)^n f^((n))(a) must be bracketed, else the numerator is only a
int_0^1f(x)dx int_0^1f(x)dx subscripts must come before superscripts
[[a,b],[c,d]]((n),(k)) [[a,b],[c,d]]((n),(k)) matrices and column vectors are simple to type
x/x = {(1,if x!=0),(text{undefined},if x=0):} x/x={(1,if x!=0),(text{undefined},if x=0):} piecewise defined functions are based on matrix notation
a//b a//b use // for inline fractions
(a/b)/(c/d) (a/b)/(c/d) with brackets, multiple fraction work as expected
a/b/c/d a/b/c/d without brackets the parser chooses this particular expression
((a*b))/c ((a*b))/c only one level of brackets is removed; * gives standard product
sqrt sqrt root3x sqrt sqrt root3x spaces are optional, only serve to split strings that should not match
<< a,b >> and {:(x,y),(u,v):} << a,b >> and {:(x,y),(u,v):} angle brackets and invisible brackets
(a,b]={x in RR | a < x <= b} (a,b]={x in RR | a < x <= b} grouping brackets don't have to match
abc-123.45^-1.1 abc-123.45^-1.1 non-tokens are split into single characters,
but decimal numbers are parsed with possible sign
hat(ab) bar(xy) ulA vec v dotx ddot y hat(ab) bar(xy) ulA vec v dotx ddot y accents can be used on any expression (work well in IE)
bb{AB3}.bbb(AB]. cc(AB).fr{AB}.tt[AB].sf(AB) bb{AB3}.bbb(AB].cc(AB).fr{AB}.tt[AB].sf(AB) font commands; can use any brackets around argument
\stackrel"def"= or \stackrel{\Delta}{=}" "("or ":=) \stackrel"def"= or \stackrel{\Delta}{=}" "("or ":=) symbols can be stacked
{::}_(\ 92)^238U {::}_(\ 92)^238U prescripts simulated by subsuperscripts

Tables courtesy the author of ASCIIMathML: Peter Jipsen, Chapman University.

## Problem Solver This tool combines the power of mathematical computation engine that excels at solving mathematical formulas with the power of GPT large language models to parse and generate natural language. This creates math problem solver thats more accurate than ChatGPT, more flexible than a calculator, and faster answers than a human tutor. Learn More.