6. The 3-dimensional Co-ordinate System

We can expand our 2-dimensional (x-y) coordinate system into a 3-dimensional coordinate system, using x-, y-, and z-axes.

3D- axes

The x-y plane is horizontal in our diagram above and shaded green. It can also be described using the equation z = 0, since all points on that plane will have 0 for their z-value.

The x-z plane is vertical and shaded pink above. This plane can be described using the equation `y = 0`.

The y-z plane is also vertical and shaded blue. The y-z plane can be described using the equation `x = 0`.

We normally use the 'right-hand orientation' for the 3 axes, with the positive x-axis pointing in the direction of the first finger of our right hand, the positive y-axis pointing in the direction of our second finger and the positive z-axis pointing up in the direction of our thumb.

right hand rule

Example - Points in 3-D Space

In 3-dimensional space, the point `(2, 3, 5)` is graphed as follows:

3D Vector (2,3,5)

To reach the point `(2, 3, 5)`, we move `2` units along the x-axis, then `3` units in the y-direction, and then up `5` units in the z-direction.

Distance in 3-dimensional Space

To find the distance from one point to another in 3-dimensional space, we just extend Pythagoras' Theorem.

Distance from the Origin

The general point P (a, b, c) is shown on the 3D graph below. The point N is directly below P on the x-y plane.

distance in 3D space

The distance from `(0, 0, 0)` to the point P (a, b, c) is given by:

`"distance"\ OP = sqrt (a^2+ b^2+ c^2)`


The point N `(a, b, 0)` is shown on the graph. From Pythagoras' Theorem,

`"distance"\ ON = sqrt (a^2+ b^2)`

and squaring both sides gives:


Distance NP is simply c (this is the distance up the z-axis for the point P).

Applying Pythagoras' Theorem for the triangle ONP, we have:

`{: ("distance"\ OP,= sqrt ((ON)^2+ c^2)),(,= sqrt (a^2+ b^2+ c^2)) :}`

Example 1 - Distance from the Origin to a Point

Find the distance from the origin O to the point B `(2, 3, 5)`. This is the example from above.

Distance Between 2 Points in 3 Dimensions

If we have point A (x1, y1, z1) and another point B (x2, y2, z2) then the distance AB between them is given by the formula:

`"distance"\ AB = sqrt ((x_2-x_1)^2+ (y_2-y_1)^2+ (z_2-z_1)^2)`

This is just an extension of the distance formula (from the origin to a point) that we met above.

Example 2 - Distance between 2 points

Find the distance between the points P (2, 3, 5) and Q (4, -2, 3).

Didn't find what you are looking for on this page? Try search:

Online Algebra Solver

This algebra solver can solve a wide range of math problems. (Please be patient while it loads.)

Ready for a break?


Play a math game.

(Well, not really a math game, but each game was made using math...)

The IntMath Newsletter

Sign up for the free IntMath Newsletter. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

Given name: * required

Family name:

email: * required

See the Interactive Mathematics spam guarantee.

Share IntMath!

Short URL for this Page

Save typing! You can use this URL to reach this page:


Math Lessons on DVD


Easy to understand math lessons on DVD. See samples before you commit.

More info: Math videos