7. The Inverse Laplace Transform


If `G(s)=``{g(t)}`, then the inverse transform of `G(s)` is defined as:

`^{:-1:}G(s) = g(t)`

Some Properties of the Inverse Laplace Transform

We first saw these properties in the Table of Laplace Transforms.

Property 1: Linearity Property

`^{:-1:}{a\ G_1(s) + b\ G_2(s)} = a\ g_1(t) + b\ g_2(t)`

Property 2: Shifting Property

If `^{:-1:}G(s) = g(t)`, then `^{:-1:}G(s - a) = e^(at)g(t)`.

Property 3

If `^{:-1:}G(s) = g(t)`, then `^{:-1:}{(G(s))/s}=int_0^tg(t)dt`.

Property 4

If `^{:-1:}G(s) = g(t)`, then `^{:-1:}{e^(-as)G(s)} = u(t - a) * g(t - a)`.

Continues below


Find the inverse of the following transforms and sketch the functions so obtained.

(a) `G(s)=2/s(e^(-3s)-e^(-4s))`

(b) `G(s)=(2s+1)/s^2e^(-2s)-(3s+1)/s^2e^(-3s)`

(c) `G(s)=1/(s^2+9)e^(-pis//2)`

(d) `G(s)=1/((s-5)^2)e^(-s)`

(e) `G(s)=(s+4)/(s^2+9)`

(f) `G(s)=3/(s^2+4s+13)`

(g) `G(s)=(1-e^((1-s)T))/((s-1)(1-e^(-sT))` (where T is a constant)

Examples Involving Partial Fractions

We first met Partial Fractions in the Methods of Integration section. You may wish to revise partial fractions before attacking this section.

Obtain the inverse Laplace transforms of the following functions:

(h) `G(s)=(2s^2-16)/(s^3-16s)`

(i) `G(s)=3/(s^2(s+2))`

Integral and Periodic Types

(j) `G(s)=omega_0/(s(s^2+(omega_0)^2))`

(k) `G(s)=(s+b)/(s(s^2+2bs+b^2+a^2))`

(l) `G(s)=(1-e^(-sT))/(s(1+e^(-sT)))`


Search IntMath, blog and Forum

Online Algebra Solver

This algebra solver can solve a wide range of math problems.

Calculus Lessons on DVD


Easy to understand calculus lessons on DVD. See samples before you commit.

More info: Calculus videos

The IntMath Newsletter

Sign up for the free IntMath Newsletter. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

Given name: * required

Family name:

email: * required

See the Interactive Mathematics spam guarantee.