chapter menu

9. Solving Integro-Differential Equations

An "integro-differential equation" is an equation that involves both integrals and derivatives of an unknown function.

Using the Laplace transform of integrals and derivatives, an integro-differential equation can be solved.

Similarly, it is easier with the Laplace transform method to solve simultaneous differential equations by transforming both equations and then solve the two equations in the s-domain and finally obtain the inverse to get the solution in the t-domain.

Example 1 (Integro-Differential Equation)

Solve the equation for the response i(t), given that

`(di)/(dt)+2i+5int_0^ti\ dt=u(t)`

and i(0) = 0.

Solution Graph

This is the graph of the solution we just found:


The graph of i(t).

Example 2 (Simultaneous DEs)

Solve for x(t) and y(t), given that x(0) = 4, y(0) = 3, and:



The rectangular plot of the solution is an interesting curve:


The graph of (x(t), y(t)), for `-3 < t < 3`, showing the point (3, 4) at `t = 0`.

The curve start at the top (at `t = -3`) and loops anticlockwise until `t=0` (at the point `(3, 4)`, and then the loop gets smaller and smaller, approaching `(2,2)` as `t->oo`.

Online Algebra Solver

This algebra solver can solve a wide range of math problems. (Please be patient while it loads.)

Calculus Lessons on DVD


Easy to understand calculus lessons on DVD. See samples before you commit.

More info: Calculus videos

The IntMath Newsletter

Sign up for the free IntMath Newsletter. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

Given name: * required

Family name:

email: * required

See the Interactive Mathematics spam guarantee.