Table of Common Integrals

You can see how to use this table of common integrals in the previous section: Integration by Use of Tables.

1. `int1/(ax+b)dx` `=1/aln\ |ax+b|+K`

2. `int1/((ax+b)^2)dx` `=-1/(a(ax+b))+K`

3. `int1/((ax+b)^n)dx` `=-1/(a(n-1)(ax+b)^(n-1))+K`

4. `int1/(a^2+x^2)dx` `=1/atan^(-1)x/a+K`

Or, equivalently: `int1/(a^2+x^2)dx` `=1/a arctan\ x/a+K`

5. `int(f^'(x))/(f(x))dx` `=ln\ |f(x)|+K`

6. `intsin^2udu` `=u/2-1/2sin\ u\ cos\ u+K`

7. `intsin^3udu` `=-cos\ u+1/3cos^3u+K`

8. `intsin^(n)u\ du` `=-1/nsin^(n-1)u\ cos\ u+(n-1)/nintsin^(n-2)u\ du`

9. `intcos^2u\ du` `=u/2+1/2sin\ u\ cos\ u+K`

10. `intcos^3u\ du` `=sin\ u-1/3sin^3u+K`

11. `intcos^(n)u\ du` `=1/ncos^(n-1)u\ sin\ u+(n-1)/nintcos^(n-2)u\ du`

12. `inttan^(n)u\ du` `=(tan^-1u)/(n-1)-inttan^(n-2)u\ du`

13. `int(du)/(u^2-a^2)` `=1/(2a) ln\ |(u-a)/(u+a)|+K`

14. `int(du)/(sqrt(u^2+-a^2))` `=ln\ |u+sqrt(u^2+-a^2)|+K`

15. `intt\ sin\ nt\ dt` `=1/(n^2)(sin\ nt-nt\ cos\ nt)+K`

16. `intt\ cos\ nt\ dt` `=1/(n^2)(cos\ nt+nt\ sin\ nt)+K`

17. `inte^(au)\ sin\ bu\ du` `=(e^(au)(a\ sin\ bu-b\ cos\ bu))/(a^2+b^2)+K`

18. `inte^(au)cos\ bu\ du` `=(e^(au)(a\ cos\ bu+b\ sin\ bu))/(a^2+b^2)+K`

19. `intu^(au)du` `=e^(au)(a^2u^2-2au+2)/(a^3)+K`

20. `intt^2\ sin\ nt\ dt` `=1/n^3(-n^2t^2cos\ nt+2\ cos\ nt+2nt\ sin\ nt)+K`

21. `intt^2cos\ ntdt` `=1/(n^3)(n^2t^2\ sin\ nt-2\ sin\ nt+2nt\ cos\ nt)+K`

Didn't find what you are looking for on this page? Try search:

Online Algebra Solver

This algebra solver can solve a wide range of math problems. (Please be patient while it loads.)

Ready for a break?


Play a math game.

(Well, not really a math game, but each game was made using math...)

The IntMath Newsletter

Sign up for the free IntMath Newsletter. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

Given name: * required

Family name:

email: * required

See the Interactive Mathematics spam guarantee.

Share IntMath!

Calculus Lessons on DVD


Easy to understand calculus lessons on DVD. See samples before you commit.

More info: Calculus videos