3. Factors and Roots of a Polynomial Equation

Here are three important theorems relating to the roots of a polynomial:

(a) A polynomial of n-th degree can be factored into n linear factors.

(b) A polynomial equation of degree n has exactly n roots.

(c) If `(x − r)` is a factor of a polynomial, then `x = r` is a root of the associated polynomial equation.

Let's look at some examples to see what this means.

Example 1

The cubic polynomial f(x) = 4x3 − 3x2 − 25x − 6 has degree `3` (since the highest power of x that appears is `3`).

This polynomial can be factored (using Scientific Notebook or similar software) and written as

4x3 − 3x2 − 25x − 6 = (x − 3)(4x + 1)(x + 2)

So we see that a 3rd degree polynomial has 3 roots.

The associated polynomial equation is formed by setting the polynomial equal to zero:

f(x) = 4x3 − 3x2 − 25x − 6 = 0

In factored form, this is:

`(x − 3)(4x + 1)(x + 2) = 0`

We see from the expressions in brackets and using the 3rd theorem from above, that there are 3 roots, `x = 3`, `-1/4`, ` −2`.

In this example, all 3 roots of our polynomial equation of degree 3 are real.

Since `(x − 3)` is a factor, then `x = 3` is a root.

Since `(4x + 1)` is a factor, then `x=-1/4` is a root.

Since `(x + 2)` is a factor, then `x = −2` is a root.

Example 2

The equation x5 − 4x4 7x3 + 14x2 − 44x + 120 = 0 can be factored (using Scientific Notebook) and written as:

(x − 2)(x − 5)(x + 3)(x2 + 4) = 0

We see there are 3 real roots `x = 2, 5, -3,` and 2 complex roots `x = ±2j`, (where `j =sqrt(-1)`).

So our 5th degree equation has 5 roots altogether.

[Do you need revision on complex numbers? Go to Complex Numbers.]

Example 3

In the previous section, Remainder Theorem and the Factor Theorem, we found in one of the examples that (x + 1) is a factor of f(x) = x3 + 2x2 − 5x − 6.

This means that `x = -1` is a root of `x^3+ 2x^2− 5x − 6 = 0`.

[To check this, substitute `x = -1` into the polynomial. If it is a root, then you should get value `0` when you substitute.]

Example 4

The following polynomial equation would be rather tricky to solve using the Remainder and Factor Theorems. We will solve it using Scientific Notebook:

x4 + 0.4x3 − 6.49x2 + 7.244x − 2.112 = 0

Note: Polynomial equations do not always have "nice" solutions! (By "nice solutions" I mean solutions which are integers or simple fractions.) This is why I feel the Remainder and Factor Theorems are pretty useless, because you can only use them if at least some of the solutions are integers or simple fractions.

If you use a computer algebra system (like Wolfram | Alpha or Scientific Notebook) to solve these, you can be done in seconds and move on to something more meaningful, like the applications.

Example 5

Solve the following polynomial equation using Scientific Notebook:

3x3x2x + 4 = 0.

Using Computers to find Roots

We can also use technology to find roots. This can be done graphically OR using the in-built root-finder when available.

Using a graph, we can easily find the roots of polynomial equations that don't have "nice" roots, like the following:

x5 + 8.5x4 + 10x3 − 37.5x2 − 36x + 54 = 0.

The roots of the equation are simply the x-intercepts (i.e. where the function has value `0`). Here's the graph of the function:

graphical solution

We can see the solutions are `x=-6`, `x=-3`, `x=-2`, `x=1` and `x=1.5`. (Zooming in close to these roots on the graph confirms these values.)

Complex Roots

Regarding complex roots, the following theorem applies :

If the coefficients of the equation `f(x)=0` are real and `a + bj` is a complex root, then its conjugate `a − bj` is also a root.

For more on complex numbers, see: Complex Numbers

Example 6

In Example (2) above, we had 3 real roots and 2 complex roots. Those complex roots form a complex conjugate pair,

x = 0 − 2j and x = 0 + 2j

Example 7

The factors of the polynomial x3+ 7x2 + 17x + 15 are found using a computer algebra system as follows:

x3 + 7x2 + 17x + 15 = (x + 3)(x + 2 − j)(x + 2 + j)

So the roots are

`x = −3`

`x = −2 + j` and

`x = −2 − j`

There is one real root and the remaining 2 roots form a complex conjugate pair.

Online Algebra Solver

This algebra solver can solve a wide range of math problems. (Please be patient while it loads.)

Algebra Lessons on DVD

 

Easy to understand algebra lessons on DVD. See samples before you commit.

More info: Algebra videos

The IntMath Newsletter

Sign up for the free IntMath Newsletter. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

Given name: * required

Family name:

email: * required

See the Interactive Mathematics spam guarantee.

Loading...
Loading...