# 3. The Quadratic Formula

At the end of the last section (Completing the Square), we derived a general formula for solving quadratic equations. Here is that general formula:

For any quadratic equation `ax^2+ bx + c = 0`, the solutions for *x* can be found by using the quadratic formula:

`x=(-b+-sqrt(b^2-4ac))/(2a)`

The expression under the square root, `b^2− 4ac`, can tell us how many roots we'll get. (There's no magic here - just a consideration of what the square root of `b^2− 4ac` is.)

If ` b^2− 4ac = 0`, then we'll have **one root** only, `x = −b/(2a)`.

If ` b^2− 4ac > 0`, then we'll have **two roots**, one involving the "+" sign and the other involving the "−" sign in the formula.

If ` b^2− 4ac < 0`, then we'll have **no real roots**, since you cannot find the square root of a negative number.

The expression `b^2 − 4ac` is called the **discriminant** and in some books you will see it written with a Greek upper case Delta, like this `Delta = b^2 − 4ac`.

### Example 1

Solve `2x^2- 7x - 5 = 0` using the quadratic formula.

### Example 2

Solve `2x^2= 4x + 3`

### Exercise

Solve `6r^2= 6r + 1` using the quadratic formula.

Didn't find what you are looking for on this page? Try **search**:

### Online Algebra Solver

This algebra solver can solve a wide range of math problems. (Please be patient while it loads.)

Go to: Online algebra solver

### Ready for a break?

Play a math game.

(Well, not really a math game, but each game was made using math...)

### The IntMath Newsletter

Sign up for the free **IntMath Newsletter**. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

### Share IntMath!

### Algebra Lessons on DVD

Easy to understand algebra lessons on DVD. See samples before you commit.

More info: Algebra videos