1. Solving Quadratic Equations by Factoring

The general form of a quadratic equation is

ax2 + bx + c = 0

where x is the variable and a, b & c are constants

Examples of Quadratic Equations

(a) 5x2 − 3x − 1 = 0 is a quadratic equation in quadratic form where

`a = 5`, `b = -3`, `c = -1`

(b) 5 + 3t − 4.9t2 = 0 is a quadratic equation in quadratic form.

Here, `a = -4.9`, `b = 3`, `c = 5`

[This equation arose from finding the time when a projectile, being acted on by gravity, hits the ground.]

(c) (x + 1)2 = 4 is a quadratic equation but not in quadratic form.

It has to be expanded and simplified to:

x2 + 2x − 3 = 0

Summary

In general, a quadratic equation:

Examples of NON-quadratic Equations:

Solutions of a Quadratic Equation

The solution of an equation consists of all numbers (roots) which make the equation true.

All quadratic equations have 2 solutions (ie. 2 roots). They can be:

Example 1

The quadratic equation x2 − 7x + 10 = 0 has roots of

`x = 2` and `x = 5`. (We'll show below how to find these roots.)

This can be seen by substituting in the equation:

When x = 2,

x2 − 7x + 10

= (2)2 − 7(2) + 10

= 4 − 14 + 10

= 0

(This can be shown similarly for x = 5). In this example, the roots are real and distinct.

Example 2

The quadratic equation x2 − 6 x + 9 = 0 has double roots of x = 3 (both roots are the same)

This can be seen by substituting x = 3 in the equation:

x2 − 6x + 9

= (3)2 − 6(3) + 9

= 9 − 18 + 9

= 0

Example 3

The quadratic equation

x2 + 9 = 0

has imaginary roots of

`x=sqrt(-9)` or `-sqrt(-9)`

Learn more about imaginary numbers.

Solving a Quadratic Equation by Factoring

For the time being, we shall deal only with quadratic equations that can be factored (factorised). If you need a reminder on how to factor, go back to the section on Factoring Trinomials.

Using the fact that a product is zero if any of its factors is zero we follow these steps:

(i) Bring all terms to the left and simplify, leaving zero on the right side.

(ii) Factorise the quadratic expression

(iii) Set each factor equal to zero

(iv) Solve the resulting linear equations

(v) Check the solutions in the original equation

Example 4

Solve x2 − 2x − 15 = 0

Example 5

Solve

`9x^2+ 6x + 1 = 0`

Example 6 (involving fractions)

Solve

`2-1/x=3/(x+2)`

Exercises

  1. Determine if the following are quadratic equations. If so, determine a, b, and c.

a. 5x2 = 9 − x

b. (3x − 2)2 = 2

  1. Solve for x:

2x2 − 7x + 6 = 3

Didn't find what you are looking for on this page? Try search:

Online Algebra Solver

This algebra solver can solve a wide range of math problems. (Please be patient while it loads.)

Ready for a break?

 

Play a math game.

(Well, not really a math game, but each game was made using math...)

The IntMath Newsletter

Sign up for the free IntMath Newsletter. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

Given name: * required

Family name:

email: * required

See the Interactive Mathematics spam guarantee.

Share IntMath!

Algebra Lessons on DVD

 

Easy to understand algebra lessons on DVD. See samples before you commit.

More info: Algebra videos

Loading...
Loading...