Table of Common Integrals

Leibniz's table of derivatives and integrals

Leibniz table of integrals
A simple table of derivatives and integrals from the Gottfried Leibniz archive. Leibniz developed integral calculus at around the same time as Isaac Newton. [Image source]

You can see how to use this table of common integrals in the previous section: Integration by Use of Tables.

1. `int1/(ax+b)dx` `=1/aln\ |ax+b|+K`

2. `int1/((ax+b)^2)dx` `=-1/(a(ax+b))+K`

3. `int1/((ax+b)^n)dx` `=-1/(a(n-1)(ax+b)^(n-1))+K`

4. `int1/(a^2+x^2)dx` `=1/atan^(-1)(x/a)+K`

Or, equivalently: `int1/(a^2+x^2)dx` `=1/a arctan\ x/a+K`

5. `int(f’(x))/(f(x))dx` `=ln\ |f(x)|+K`

6. `intsin^2udu` `=u/2-1/2sin\ u\ cos\ u+K`

7. `intsin^3udu` `=-cos\ u+1/3cos^3u+K`

8. `intsin^(n)u\ du` `=-1/nsin^(n-1)u\ cos\ u` `+(n-1)/nintsin^(n-2)u\ du`

9. `intcos^2u\ du` `=u/2+1/2sin\ u\ cos\ u+K`

10. `intcos^3u\ du` `=sin\ u-1/3sin^3u+K`

11. `intcos^(n)u\ du` `=1/ncos^(n-1)u\ sin\ u` `+(n-1)/nintcos^(n-2)u\ du`

12. `inttan^(n)u\ du` `=(tan^-1u)/(n-1)-inttan^(n-2)u\ du`

13. `int(du)/(u^2-a^2)` `=1/(2a) ln\ |(u-a)/(u+a)|+K`

14. `int(du)/(sqrt(u^2+-a^2))` `=ln\ |u+sqrt(u^2+-a^2)|+K`

15. `intt\ sin\ nt\ dt` `=1/(n^2)(sin\ nt-nt\ cos\ nt)+K`

16. `intt\ cos\ nt\ dt` `=1/(n^2)(cos\ nt+nt\ sin\ nt)+K`

17. `inte^(au)\ sin\ bu\ du` `=(e^(au)(a\ sin\ bu-b\ cos\ bu))/(a^2+b^2)+K`

18. `inte^(au)cos\ bu\ du` `=(e^(au)(a\ cos\ bu+b\ sin\ bu))/(a^2+b^2)+K`

19. `intu^(au)du` `=e^(au)(a^2u^2-2au+2)/(a^3)+K`

20. `intt^2\ sin\ nt\ dt` `=1/n^3(-n^2t^2cos\ nt` `{:+2\ cos\ nt+2nt\ sin\ nt)+K`

21. `intt^2cos\ ntdt` `=1/(n^3)(n^2t^2\ sin\ nt-2\ sin\ nt` `{:+2nt\ cos\ nt)+K`


Search IntMath, blog and Forum

Online Algebra Solver

This algebra solver can solve a wide range of math problems.

Calculus Lessons on DVD


Easy to understand calculus lessons on DVD. See samples before you commit.

More info: Calculus videos

The IntMath Newsletter

Sign up for the free IntMath Newsletter. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

Given name: * required

Family name:

email: * required

See the Interactive Mathematics spam guarantee.