Skip to main content

3. Integration: The Exponential Form

by M. Bourne

By reversing the process in obtaining the derivative of the exponential function, we obtain the remarkable result:

`int e^udu=e^u+K`

It is remarkable because the integral is the same as the expression we started with. That is, `e^u`.

Example 1




Let `u=4x` then `du=4\ dx`. Our integral becomes:





Get the Daily Math Tweet!
IntMath on Twitter

Example 2




Let `u=x^4`, then `du=4x^3dx`. Our integral becomes:




Example 3

`int_0^1 sec^2x e^(tan x)dx`

Here's the curve `y=sec^2x e^(tan x)`:

The shaded region represents the integral we need to find.


`int_0^1sec^2 x\ e^(tan x)dx`

Let `u=tan x`, then `du=sec^2 x\ dx`. So we have:

`int_0^1sec^2x\ e^(tan x)dx=[e^(tan x)]_0^1`

`=[e^(tan 1)]-[e^(tan 0)]`


Of course, `x` is in radians. These integration techniques don't work in degrees.

Please support IntMath!

Continues below

Example 4

In the theory of lasers, we see

`E=a int_0^(I_0)e^(-Tx)dx`

where `a`, `I_0` and `T` are constants. Find `E`.


`E=a int_0^(I_0)e^(-Tx)dx`

Let `u = -Tx` then `du = -T\ dx`. Our integral is now:







Easy to understand math videos:


Integrate each of the given functions.

Exercise 1

`int x\ e^(-x^2)dx`



Put `u = -x^2` then `du = -2x\ dx`.

`int xe^(-x^2)dx=-1/2inte^udu`



Easy to understand math videos:

Exercise 2

`int(4\ dx)/(sec x\ e\ ^(sin x)`


Since `1/(sec x)=cos x`, we can re-write the question as:

`int(4\ cos x\ dx)/(e^(sin x)`

Put `u = sin x` then `du = cos x\ dx`

`int(4\ cos x\ dx)/(e^(sin x))=4int(du)/e^u`

`=4int e^-u\ du`


`=-4e^(-sin x)+K`

Easy to understand math videos:

Exercise 3



Since `−(2 − 3x) = 3x − 2`, we can bring the denominator to the top and write the question as:

`int_(-1)^1 e^(-(2-3x)) dx =int_-1^1e^(3x-2)dx`

Put `u = 3x − 2` then `du = 3\ dx`.





Get the Daily Math Tweet!
IntMath on Twitter

Here is the curve `y=1/e^(2-3x)`:

The shaded region represents the integral we just found.

Exercise 4

Find the equation of the curve for which `(dy)/(dx)=sqrt(e^(x+3))` if the curve passes through `(1, 0)`.


We need to find

`y=int sqrt(e^(x+3))dx,`

and subsitute our given conditions to find the equation of the curve.

Put `u = x + 3` then `du = dx`. Perform the integral.

`y=intsqrt(e^(x+3)) dx`

`=intsqrt(e^u) du`

`=inte^(u//2) du`



Now, the curve passes through `(1, 0)`.

This means when `x = 1`, `y = 0`.

So `0=2e^2+K`, giving `K = -2e^2`.

So the required equation of the curve is:



Please support IntMath!

The graph of the solution curve we just found, showing that it passes through (1, 0).

Application - Volume of Solid of Revolution

The area bounded by the curve `y = e^x`, the `x`-axis and the limits of `x = 0` and `x = 3` is rotated about the `x`-axis. Find the volume of the solid formed. (You may wish to remind yourself of the volume of solid of revolution formula.)


The graph of `y=e^x`, with the area under the curve between `x=0` to `x=3` shaded.

When the shaded area is rotated 360° about the x-axis, we have:

Area under the curve `y=e^x` from `x=0` to `x=3` rotated around the `x`-axis.

Applying the volume of a solid of revolution formula, we get

`V=pi int_a^by^2dx`

`=pi int_0^3(e^x)^2dx`

`=pi int_0^3e^(2x)dx`



`=((e^6-1)/2)pi\ "units"^3`

`=632.1\ "units"^3`

Easy to understand math videos:


Search IntMath, blog and Forum

Search IntMath

Online Calculus Solver

This calculus solver can solve a wide range of math problems.

Calculus Lessons on DVD

Math videos by

Easy to understand calculus lessons on DVD. See samples before you commit.

More info: Calculus videos

The IntMath Newsletter

Sign up for the free IntMath Newsletter. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

See the Interactive Mathematics spam guarantee.