Search IntMath
Close

# Is 270 degrees considered to be in the 3rd or the 4th quadrant? [Solved!]

### My question

Hi Murray, I have a question about the information provided on the linked page

My question is: is 270 degrees considered to be in the 3rd or the 4th quadrant? (because 270 is midway between 180 and 360, that's why I'm confused.)

Likewise, is 90 degrees considered to be in the first or the second quadrant?

Thanks for clearing up the confusion.

### Relevant page

6. Trigonometric Functions of Any Angle

### What I've done so far

Tried several examples to get it.

X

Hi Murray, I have a question about the information provided on the linked page

My question is: is 270 degrees considered to be in the 3rd or the 4th quadrant? (because 270 is midway between 180 and 360, that's why I'm confused.)

Likewise, is 90 degrees considered to be in the first or the second quadrant?

Thanks for clearing up the confusion.
Relevant page

<a href="/trigonometric-functions/6-trigonometry-functions-any-angle.php">6. Trigonometric Functions of Any Angle</a>

What I've done so far

Tried several examples to get it.

## Re: Is 270 degrees considered to be in the 3rd or the 4th quadrant?

Hi Daniel

Actually, for each of those angles that you mentioned, we would say that they are in no particular quadrant. You usually need to do something special for each one.

For example, when considering tan x, it is equivalent to (sin x)/(cos x).

At x = 0^"o", sin x = 0 and cos x = 1, so the value of tan x is 0.

However, at x = 90^"o", cos x = 0, so the denominator of tan x is 0 which is undefined.

You need to treat each of the 90, 180 and 270 cases separately since they are not in any quadrant.

Hope that helps.

X

Hi Daniel

Actually, for each of those angles that you mentioned, we would say that they are in no particular quadrant. You usually need to do something special for each one.

For example, when considering tan x, it is equivalent to (sin x)/(cos x).

At x = 0^"o", sin x = 0 and cos x = 1, so the value of tan x is 0.

However, at x = 90^"o", cos x = 0, so the denominator of tan x is 0 which is undefined.

You need to treat each of the 90, 180 and 270 cases separately since they are not in any quadrant.

Hope that helps.

## Re: Is 270 degrees considered to be in the 3rd or the 4th quadrant?

It does a lot. Thanks

X

It does a lot. Thanks

You need to be logged in to reply.

## Related Trigonometric Functions questions

• Coterminal angle [Solved!]
find the least positive degree of an angle that is coterminal with an angle of...
• Solving a triangle [Solved!]
What does it mean to "solve a triangle"
• Coterminal angle [Solved!]
find the least positive degree of an angle that is coterminal with an angle of...