2. Sine, Cosine, Tangent and the Reciprocal Ratios

by M. Bourne

Triangle showing adjacent, hypotenue and opposite sides


For the angle θ in a right-angled triangle as shown, we name the sides as:

We define the three trigonometrical ratios sine θ, cosine θ, and tangent θ as follows (we normally write these in the shortened forms sin θ, cos θ, and tan θ):

`sin \ theta=text(opposite)/text(hypotenuse)` `cos \ theta =text(adjacent)/text(hypotenuse)` `tan \ theta =text(opposite)/text(adjacent)`


To remember these, many people use SOH CAH TOA, that is:

Sin θ = Opposite/Hypotenuse,

Cos θ = Adjacent/Hypotenuse, and

Tan θ = Opposite/Adjacent

The Reciprocal Trigonometric Ratios

Often it is useful to use the reciprocal ratios, depending on the problem. (In plain English, the reciprocal of a fraction is found by turning the fraction upside down.)

`"cosecant"\ θ` is the reciprocal of `"sine"\ θ`,

`"secant"\ θ` is the reciprocal of `"cosine"\ θ`, and

`"cotangent"\ θ` is the reciprocal of `"tangent"\ θ`

We usually write these in short form as `csc\ θ`, `sec\ θ` and `cot\ θ`. (In some textbooks, "csc" is written as "cosec". It's the same thing.)

`csc \ theta =text(hypotenuse)/text(opposite)` `sec\ theta =text(hypotenuse)/text(adjacent)` `cot \ theta =text(adjacent)/text(opposite)`

Important note: There is a big difference between csc θ and sin-1 θ.

So on your calculator, don't use your sin-1 button to find csc θ.

We will meet the idea of sin-1θ in the next section, Values of Trigonometric Functions.

The Trigonometric Functions on the x-y Plane

Angle on the cartesian plane

For an angle in standard position, we define the trigonometric ratios in terms of x, y and r:

`sin \ theta =y/r` `cos\ theta =x/r` `tan\ theta =y/x`

Notice that we are still defining

sin θ as `"opp"/"hyp"`; cos θ as `"adj"/"hyp"`, and tan θ as `"opp"/"adj"`,

but we are using the specific x-, y- and r-values defined by the point (x, y) that the terminal side passes through. We can choose any point on that line, of course, to define our ratios.

To find r, we use Pythagoras' Theorem, since we have a right angled triangle:

`r=sqrt(x^2+y^2)`

Not surprisingly, the reciprocal ratios are defined similarly in terms of the x-, y- and r-values as follows:

`csc\ theta =r/y` `sec\ theta =r/x` `cot\ theta =x/y`

We will see some examples of finding exact values in the next section, Values of Trigonometric Functions ».

Didn't find what you are looking for on this page? Try search:

Online Algebra Solver

This algebra solver can solve a wide range of math problems. (Please be patient while it loads.)

Ready for a break?

 

Play a math game.

(Well, not really a math game, but each game was made using math...)

The IntMath Newsletter

Sign up for the free IntMath Newsletter. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

Given name: * required

Family name:

email: * required

See the Interactive Mathematics spam guarantee.

Share IntMath!

Short URL for this Page

Save typing! You can use this URL to reach this page:

intmath.com/sincostan

Trigonometry Lessons on DVD

 

Easy to understand trigonometry lessons on DVD. See samples before you commit.

More info: Trigonometry videos

Loading...
Loading...