IntMath Home » Forum home » Analytic Trigonometry » Trig identity (sinx+cosx)^2tanx=tanx+2sin^2x

IntMath forum | Analytic Trigonometry

Trig identity (sinx+cosx)^2tanx=tanx+2sin^2x [Solved!]

My question

Show (sinx+cosx)^2tanx=tanx+2sin^2x

Relevant page

1. Trigonometric Identities

What I've done so far

`RHS = tanx+2sin^2x`

`=tan x + 2(1-cos^2x)`

`=tanx + 2 - 2cos^2 x`

But I can't make it look like the LHS.

X

Show (sinx+cosx)^2tanx=tanx+2sin^2x
Relevant page

<a href="/analytic-trigonometry/1-trigonometric-identities.php">1. Trigonometric Identities</a>

What I've done so far

`RHS = tanx+2sin^2x`

`=tan x + 2(1-cos^2x)`

`=tanx + 2 - 2cos^2 x`

But I can't make it look like the LHS.

Re: Trig identity (sinx+cosx)^2tanx=tanx+2sin^2x

It's correct so far, but I don't think it helped.

Expand out the bracket on the LHS and see if you recognize anything.

X

It's correct so far, but I don't think it helped.

Expand out the bracket on the LHS and see if you recognize anything.

Re: Trig identity (sinx+cosx)^2tanx=tanx+2sin^2x

OK.

` (sinx+cosx)^2tanx ` `= (sin^2x + 2sinx cosx + cos^2 x)tanx`

`=(1 + 2sinxcosx)tanx`

Is that right? But what do I do now?

X

OK.

` (sinx+cosx)^2tanx ` `= (sin^2x + 2sinx cosx + cos^2 x)tanx`

`=(1 + 2sinxcosx)tanx`

Is that right? But what do I do now?

Re: Trig identity (sinx+cosx)^2tanx=tanx+2sin^2x

Just remember `tanx = (sinx)/(cosx)`

X

Just remember `tanx = (sinx)/(cosx)`

Re: Trig identity (sinx+cosx)^2tanx=tanx+2sin^2x

`(1+2sinxcosx)tanx` `=(1+2sinxcosx)(sinx)/(cosx)`

`= (sinx)/(cosx) + 2sin^2x`

`=tanx + 2sin^2 x`

`=RHS`

Thanks a lot.

X

`(1+2sinxcosx)tanx` `=(1+2sinxcosx)(sinx)/(cosx)`

`= (sinx)/(cosx) + 2sin^2x`

`=tanx + 2sin^2 x`

`=RHS`

Thanks a lot.

Reply

You need to be logged in to reply.

Search IntMath, blog and Forum