# 4. Multiplication of Matrices

**Important:** We can only multiply matrices if the number of columns in the first matrix is the same as the number of rows in the second matrix.

### Example 1

a) Multiplying a 2 × 3 matrix by a 3 × 4 matrix is possible and it gives a 2 × 4 matrix as the answer.

b) Multiplying a 7 × 1 matrix by a 1 × 2 matrix is okay; it gives a 7 × 2 matrix

c) A 4 × 3 matrix times a 2 × 3 matrix is NOT possible.

## How to Multiply 2 Matrices

We use letters first to see what is going on. We'll see a numbers example after.

As an example, let's take a general 2 × 3 matrix multiplied by a 3 × 2 matrix.

`[(a,b,c),(d,e,f)][(u,v),(w,x),(y,z)]`

The answer will be a 2 × 2 matrix.

We multiply and add the elements as follows. We work **across** the 1st row of the first matrix, multiplying **down** the 1st column of the second matrix, element by element. We **add** the resulting products. Our answer goes in position *a*_{11} (top left) of the answer matrix.

We do a similar process for the 1st row of the first matrix and the **2nd** column of the second matrix. The result is placed in position *a*_{12}.

Now for the **2nd** row of the first matrix and the **1st** column of the second matrix. The result is placed in position *a*_{21}.

Finally, we do the 2nd row of the first matrix and the 2nd column of the second matrix. The result is placed in position *a*_{22}.

So the result of multiplying our 2 matrices is as follows:

`[(a,b,c),(d,e,f)][(u,v),(w,x),(y,z)]` `=[(au+bw+cy,av+bx+cz),(du+ew+fy,dv+ex+fz)]`

Now let's see a number example.

### Phone users

**NOTE:** If you're on a phone, you can scroll any **wide matrices** on this page to the right or left to see the whole expression.

### Example 2

Multiply:

`((0,-1,2),(4,11,2))((3,-1),(1,2),(6,1))`

Answer

This is 2×3 times 3×2, which will give us a 2×2 answer.

`((0,-1,2),(4,11,2)) ((3,-1),(1,2),(6,1))`

`=((0xx3+ -1xx1 + 2xx6,0xx-1+ -1xx2 + 2xx1), (4xx3+11xx1+2xx6,4xx -1 + 11xx2 + 2xx1))`

` = ((0-1+12,0-2+2), (12+11+12,-4+22+2))`

` = ((11,0),(35,20)) `

Our answer is a 2×2 matrix.

Please support IntMath!

## Multiplying 2 × 2 Matrices

The process is the same for any size matrix. We multiply **across** rows of the first matrix and **down** columns of the second matrix, element by element. We then add the products:

`((a,b),(c,d))((e,f),(g,h))` `=((ae+bg,af+bh),(ce+dg,cf+dh))`

In this case, we multiply a 2 × 2 matrix by a 2 × 2 matrix and we get a 2 × 2 matrix as the result.

### Example 3

Multiply:

`((8,9),(5,-1))((-2,3),(4,0))`

Answer

` ((8,9),(5,-1))((-2,3),(4,0)) `

`= ((8 xx -2+9xx4,8xx3+9xx0),(5xx-2+ -1xx4,5xx3 + -1xx0))`

` = ((-16+36,24+0),(-10+ -4,15 + 0)) `

` = ((20,24),(-14,15)) `

## Matrices and Systems of Simultaneous Linear Equations

We now see how to write a system of linear equations using matrix multiplication.

### Example 4

The system of equations

−3

x+y= 16

x− 3y= −4

can be written as:

`((-3,1),(6,-3))((x),(y))=((1),(-4))`

Matrices are ideal for computer-driven solutions of problems because computers easily form *arrays*. We can leave out the algebraic symbols. A computer only requires the first and last matrices to solve the system, as we will see in Matrices and Linear Equations.

## Note 1 - Notation

Care with **writing** matrix multiplication.

The following expressions have **different meanings:**

ABismatrix multiplication

A×Biscrossproduct, which returns avector

A*Bused in computer notation, but not on paper

A•Bdotproduct, which returns ascalar.

[See the Vector chapter for more information on vector and scalar quantities.]

## Note 2 - Commutativity of Matrix Multiplication

Does `AB = BA`?

Let's see if it is true using an example.

### Example 5

If

`A=((0,-1,2),(4,11,2))`

and

`B=((3,-1),(1,2),(6,1))`

find *AB* and *BA.*

Answer

We performed *AB* above, and the answer was:

`AB = ((0,-1,2),(4,11,2)) ((3,-1),(1,2),(6,1))`

` = ( (11,0),(35,20) )`

Now *BA* is (3 × 2)(2 × 3) which will give 3 × 3:

`BA= ((3,-1),(1,2),(6,1))((0,-1,2),(4,11,2))`

` = ((0-4,-3-11,6-2),(0+8,-1+22,2+4),(0+4,-6+11,12+2))`

` = ((-4,-14,4),(8,21,6),(4,5,14)) `

So in this case, *AB* does NOT equal *BA.*

In fact, for most matrices, you cannot reverse the order of multiplication and get the same result.

Get the Daily Math Tweet!

IntMath on Twitter

In general, when multiplying matrices, the commutative law doesn't hold, i.e. *AB* ≠ *BA*. There are two common exceptions to this:

- The identity matrix:
*IA*=*AI*=*A*. - The
**inverse**of a matrix:*A*^{-1}*A*=*AA*^{-1}=*I.*

In the next section we learn how to find the inverse of a matrix.

### Example 6 - Multiplying by the Identity Matrix

Given that

`A=((-3,1,6),(3,-1,0),(4,2,5))`

find *AI*.

Answer

`AI = ((-3,1,6),(3,-1,0),(4,2,5)) ((1,0,0),(0,1,0),(0,0,1))`

`=((-3+0+0,0+1+0,0+0+6),(3+0+0,0+ -1+0,0+0+0),(4+0+0,0+2+0,0+0+5))`

` =((-3,1,6),(3,-1,0),(4,2,5))`

` =A`

We see that multiplying by the identity matrix does not change the value of the original matrix.

That is,

AI = A

Easy to understand math videos:

MathTutorDVD.com

## Exercises

1. If possible, find *BA* and *AB*.

`A=((-2,1,7),(3,-1,0),(0,2,-1))`

`B=(4\ \ -1\ \ \ 5)`

Answer

`BA=(4\ \ -1\ \ \ 5)((-2,1,7),(3,-1,0),(0,2,-1))`

`=( -8+(-3)+0\ \ \ 4+1+10\ \ \ 28+0+(-5))`

`=(-11\ \ 15\ \ 23)`

*AB* is not possible. (3 × 3) × (1 × 3).

Easy to understand math videos:

MathTutorDVD.com

2. Determine if *B* = *A*^{-1}, given:

`A=((3,-4),(5,-7))`

`B=((7,4),(5,3))`

Answer

If *B* = *A*^{-1}, then `AB = I`.

`AB=((3,-4),(5,-7))((7,4),(5,3))`

`=((21-20,12-12),(35-35,20-21))`

`=((1,0),(0,-1))`

` !=I`

So *B* is NOT the inverse of *A.*

3. In studying the motion of electrons, one of the Pauli spin matrices is

`s=((0,-j),(j,0))`

where

`j=sqrt(-1)`

Show that *s*^{2} = *I.*

[If you have never seen *j* before, go to the section on complex numbers].

Answer

`s^2=( (0,-j),(j,0))((0,-j),(j,0))`

`=(( 0-j^2,0+0), (0+0,-j^2+0))`

`= ((1,0),(0,1))`

`=I`

4. Evaluate the following matrix multiplication which is used in directing the motion of a robotic mechanism.

`( (cos\ 60° ,-sin\ 60° ,0),(sin\ 60°, cos\ 60°,0),(0,0,1))((2),(4),(0))`

Answer

`( (cos\ 60° ,-sin\ 60° ,0),(sin\ 60°, cos\ 60°,0),(0,0,1))((2),(4),(0))`

`=((2(0.5)-4(0.866)+0),(2(0.866)+4(0.5)+0),(0+0+0))`

`=((-2.464),(3.732),(0))`

The interpretation of this is that the robot arm moves from
position (2, 4, 0) to position (-2.46, 3.73, 0). That is, it
moves in the *x-y* plane, but its height remains at *z* = 0*.* The 3 × 3 matrix containing sin and
cos values tells it how many degrees to move.

## Matrix Multiplication interactives

### Search IntMath, blog and Forum

### Online Algebra Solver

This algebra solver can solve a wide range of math problems.

Go to: Online algebra solver

### Algebra Lessons on DVD

Math videos by MathTutorDVD.com

Easy to understand algebra lessons on DVD. See samples before you commit.

More info: Algebra videos

### The IntMath Newsletter

Sign up for the free **IntMath Newsletter**. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!