1. Determinants

by M. Bourne

Before we see how to use a matrix to solve a set of simultaneous equations, we learn about determinants.

A determinant is a square array of numbers (written within a pair of vertical lines) which represents a certain sum of products.

Below is an example of a 3 × 3 determinant (it has 3 rows and 3 columns).


The result of multiplying out, then simplifying the elements of a determinant is a single number (a scalar quantity).

Calculating a 2 × 2 Determinant

In general, we find the value of a 2 × 2 determinant with elements a, b, c, d as follows:


We multiply the diagonals (top left × bottom right first), then subtract.

Example 1



` =12-2`

` = 10`

The final result is a single number.

We will see how to expand a 3 × 3 determinant below.

Continues below

Using Determinants to Solve Systems of Equations

We can solve a system of equations using determinants, but it becomes very tedious for large systems. We will only do 2 × 2 and 3 × 3 systems using determinants.

Cramer's Rule

The solution (x, y) of the system



can be found using determinants:



Example 2

Solve the system using Cramer's Rule:

x − 3y = 6

2x + 3y = 3

3 × 3 Determinants

A 3 × 3 determinant

`|(a_1, b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|`

can be evaluated in various ways.

We will use the method called "expansion by minors". But first, we need a definition.


The 2 × 2 determinant


is called the cofactor of a1 for the 3 × 3 determinant:

`|(a_1, b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|`

The cofactor is formed from the elements that are not in the same row as a1 and not in the same column as a1.

3x3 matrix - cofactor

Similarly, the determinant


is called the cofactor of a2. It is formed from the elements not in the same row as a2 and not in the same column as a2.

We continue the pattern for the cofactor of a3.

Expansion by Minors

We evaluate our 3 × 3 determinant using expansion by minors. This involves multiplying the elements in the first column of the determinant by the cofactors of those elements. We subtract the middle product and add the final product.

`|(a_1, b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|` `=a_1|(b_2,c_2),(b_3,c_3)|` `-a_2|(b_1,c_1),(b_3,c_3)|` `+a_3|(b_1,c_1),(b_2,c_2)|`

Note that we are working down the first column and multiplying by the cofactor of each element.

Example 3



(You can explore what this example is really asking in this 3D interactive systems of equations applet.)

Cramer's Rule to Solve 3 × 3 Systems of Linear Equations

We can solve the general system of equations,

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

by using the determinants:

`x=|(d_1, b_1,c_1),(d_2,b_2,c_2),(d_3,b_3,c_3)|/Delta`

`y=|(a_1, d_1,c_1),(a_2,d_2,c_2),(a_3,d_3,c_3)|/Delta`

`z=|(a_1, b_1,d_1),(a_2,b_2,d_2),(a_3,b_3,d_3)|/Delta`


`Delta=|(a_1, b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|`

Example 4

Solve, using Cramer's Rule:

2x + 3y + z = 2

x + 2y + 3z = −1

−3x − 3y + z = 0

Determinant Exercises

1. Evaluate by expansion of minors:


2. Solve the system by use of determinants:

x + 3y + z = 4

2x 6y − 3z = 10

4x − 9y + 3z = 4


Search IntMath, blog and Forum

Online Algebra Solver

This algebra solver can solve a wide range of math problems.

Algebra Lessons on DVD


Easy to understand algebra lessons on DVD. See samples before you commit.

More info: Algebra videos

The IntMath Newsletter

Sign up for the free IntMath Newsletter. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

Given name: * required

Family name:

email: * required

See the Interactive Mathematics spam guarantee.