Skip to main content
Search IntMath
Close

450+ Math Lessons written by Math Professors and Teachers

5 Million+ Students Helped Each Year

1200+ Articles Written by Math Educators and Enthusiasts

Simplifying and Teaching Math for Over 23 Years

Tips, tricks, lessons, and tutoring to help reduce test anxiety and move to the top of the class.

Table of Derivatives

Following are the derivatives we met in previous chapters:

and this chapter,

1. Powers of x

General formula

`d/dx u^n` `=n u^(n-1) (du)/dx`, where `u` is a function of `x`.

Particular cases and examples

`d/dx c` `=0`

`d/dx x` `=1`

`d/dx x^n` `=n x^(n-1)`

`d/dx x^7` `=7 x^6`

2. Trigonometric Functions

Trigonometry General formulas (a)

`d/dx sin u = (cos u)(du)/dx`

`d/dx cos u = - (sin u) (du)/dx`

`d/dx tan u = (sec^2 u) (du)/dx`

Particular cases and examples

`d/dx sin 3x = 3 cos 3x`

`d/dx sin x^2 =\ 2x\ cos x^2`

`d/dx sin x = cos x`

`d/dx cos x = - sin x`

`d/dx cos^3 x = - 3\ sin^2 x`

`d/dx tan x = sec^2 x`

`d/dx 5tan 7x = 35\ sec^2 7x`

Trigonometry General formulas (b) - reciprocals

`d/dx csc u = (-csc u cot u)(du)/dx`

`d/dx sec u = (sec u tan u)(du)/dx`

`d/dx cot u = (- csc^2 u)(du)/dx`

Particular cases and examples

`d/dx csc x = -csc x cot x`

`d/dx sec x = sec x tan x`

`d/dx cot x = - csc^2 x`

Exponential and Logarithmic Functions

General formulas

`d/dx e^u = (e^u)(du)/dx`

`d/dx b^u = (b^u ln(b))(du)/dx`

`d/dx ln(u) = (1/u)(du)/dx = (u')/u`

Particular cases and examples

`d/dx e^x = e^x`

`d/dx 3^x = 3^x ln(3) = 1.0986 xx 3^x`

`d/dx ln(x) = 1/x`

`d/dx ln(x^4) = 4/x`

`d/dx ln(5x) = 1/x`

Inverse Trigonometric Functions

General formulas

`d/dx arcsin u = (1 / sqrt(1 - u^2))(du)/dx`

`d/dx "arccsc"\ u = (-1 /(|u| sqrt(u^2 - 1)))(du)/dx`

`d/dx arccos u = ( -1 /sqrt(1 - u^2))(du)/dx`

`d/dx "arcsec" u = (1/(|u| sqrt(u^2 - 1)))(du)/dx`

`d/dx arctan u = (1/(1 + u^2))(du)/dx`

`d/dx "arccot"\ u = (-1/(1 + u^2))(du)/dx`

Particular cases

`d/dx arcsin x = 1 / sqrt(1 - x^2)`

`d/dx "arccsc"\ x = -1 /(|x| sqrt(x^2 - 1))`

`d/dx arccos x = -1 /sqrt(1 - x^2)`

`d/dx "arcsec" x = 1/(|x| sqrt(x^2 - 1))`

`d/dx arctan x = 1/(1 + x^2)`

`d/dx "arccot"\ x = -1/(1 + x^2)`

Hyperbolic Functions

The hyperbolic functions are defined as follows:

`sinh x = (e^x-e^(-x))/2`

`cosh x = (e^x+e^(-x))/2`

`tanh x = (sinh x)/(cosh x) = (e^x - e^(-x))/(e^x + e^(-x))`

`"csch"\ x = 1/(sinh x)`

`"sech"\ x = 1/(cosh x)`

`coth x = 1/(tanh x)`

General formulas

`d/dx sinh u = (cosh u )(du)/dx`

`d/dx "csch" u = (- coth u "csch" u)(du)/dx`

`d/dx cosh u = (sinh u)(du)/dx`

`d/dx "sech" u = (- tanh u "sech" u)(du)/dx`

`d/dx "tanh" u = (1 - tanh^2 u)(du)/dx`

`d/dx coth u = (1 - coth^2 u )(du)/dx`

Particular cases

`d/dx sinh x = cosh x`

`d/dx "csch"\ x = - coth x "csch"\ x `

`d/dx cosh x = sinh x `

`d/dx "sech"\ x = - tanh x "sech"\ x `

`d/dx tanh x = 1 - tanh2 x `

`d/dx coth x = 1 - coth2 x `

24x7 Tutor Chat

Tips, tricks, lessons, and tutoring to help reduce test anxiety and move to the top of the class.