We use the log law:

log

a=^{n}nloga

So we can write the question as

y= lnx^{2}= 2 lnx

The derivative will be simply 2 times the derivative of ln *x*.

So the answer is:

`d/(dx)ln\ x^2=2 d/(dx)ln\ x=2/x`

We can see from the graph of *y* = ln *x*^{2} (curve in black, tangent in red) that the slope is twice the slope of *y* = ln *x* (curve in blue, tangent in pink).

Easy to understand math videos:

MathTutorDVD.com