The statement "*R* is numerically equal to the square of
the reactance *X*" simply means `R = X^2`.

Recall (from Application of Complex Numbers) that

`|Z|=sqrt(R^2+(X_L-X_C)^2`

In this case, from the definition, and to make life easier, we assume that *X*_{L} −* X*_{C} =* X*.

So

`|Z|=sqrt(R^2+X^2)=2Omega`

Now, on squaring both sides, we have

R^{2}+X^{2}= 4

But *R = X*^{2} (since *R* is equal to the
square of *X*) so

R^{2}+R^{}= 4

Then

R^{2}+R^{}− 4 = 0

Using quadratic formula gives

`R=(-1+-sqrt(1+16))/2` `=(-1+-sqrt17)/2`

Only the positive root has meaning (since we cannot have negative resistance), so

R= 1.56 Ω. and thereforeX= √1.56 = 1.25 Ω.

In this question, the 2 interssecting functions are a parabola (`X = R^2 + R - 4`) and a straight line (`X=4`). In the graph, we can see the 2 solutions we obtained, one is negative (`R=-2.56`) and the other one is positive, at (`R=1.56`).

Easy to understand math videos:

MathTutorDVD.com