Skip to main content
Search IntMath
Close

450+ Math Lessons written by Math Professors and Teachers

5 Million+ Students Helped Each Year

1200+ Articles Written by Math Educators and Enthusiasts

Simplifying and Teaching Math for Over 23 Years

Tips, tricks, lessons, and tutoring to help reduce test anxiety and move to the top of the class.

1. Simultaneous Linear Equations

A system of simultaneous linear equations is written:

a1x + b1y = c1
a2x + b2y = c2

Our aim in this chapter is to find values (x, y) which satisfy both equations.

First, we will test a solution to see what it means. In later sections, we will see how to find the solution.

Example

Two students are working on a chemistry problem involving 2 variables, x and y. They obtain this system of 2 equations in 2 unknowns:

−3x + y = 1

6x − 3y = −4

One student gets the solution `x = 1`, `y = 4`, while the other student's answer is `x=1/3,\ y=2.`

Who is correct?

Answer

We can write the answers using coordinates like the following.

First student's answer: `(1, 4)`.

Second student's answer: `(1/3,2).`

If `(1, 4)` satisfies both equations, then it is the correct answer.

Test in first equation:

`−3(1) + 4 = −3 + 4 = 1` [OK]

Test in second equation:

`6(1) − 3(4) = 6 − 12 = −6` [Not OK, should be `−4`]

Since the first answer doesn't work in both equations, we conclude it is not the correct solution.


Let's now try the second student's solution.

If `(1/3,2)` satisfies both equations, then it is a solution of the system.

By substitution:

Test in first equation:

`−3(1/3) + 2 = −1 + 2 = 1` [OK]

Test in second equation:

`6(1/3) − 3(2)= 2 − 6 = −4` [OK]

So we conclude the second student had the correct solution, `(1/3,2)` to the set of simultaneous equations.

We revise straight lines before seeing how to solve this kind of simultaneous equation using a graph.

Tips, tricks, lessons, and tutoring to help reduce test anxiety and move to the top of the class.