Skip to main content
Search IntMath

2. Geometric Progressions

by M. Bourne

A Geometric Progression (GP) is formed by multiplying a starting number (a1) by a number r, called the common ratio.

Example 1

The progression `5, 10, 20, 40, 80, 160`, has first term `a_1= 5`, and common ratio `r = 2`.

In this example, we started with `5` and multiplied by `2` each time to get the next number in the progression.

Formula for the `n`-th term of a GP

The n-th term of a geometric progression is given by:

an = a1rn−1


The first term is


The second term is obtained by multiplying the first by r


The third term is obtained by multiplying the second by r


The fourth term is obtained by multiplying the third by r


We continue this pattern and can see that in general, the n-th term is


Example 2

Find the 50th term of the geometric progression 5, 10, 20, 40, 80, ...


Since `a_1= 5`, `r = 2`, and using

an = a1rn-1,

we have:

a50 = (5)(250−1)

= 2,814,749,767,106,560

≈ 2.81 × 1015

The Sum of a Geometric Progression

The sum to n terms of a GP means:

a1 + a1r + a1r2 + a1r3 + ... + a1rn-1

We can show (using Proof by Induction) that this sum is equivalent to:

`S_n=(a_1(1-r^n))/(1-r)\ (r!=1)`

Example 3

(We first saw this story in the Chapter Introduction).

chess pieces
[Image source.]

A king once promised a prince anything he wanted because he saved the princess's life. The prince requested one grain of rice on the first square of a chess board, `2` on the second, `4` on the third, `8` on the fourth square, etc.

How much rice is there if one grain of rice weighs `20\ "mg"`?


We need `1 + 2 + 4 + 8 + ... + 2^63`

Now `a_1= 1`, `r = 2`, `n = 64`.

Our formula for the sum to n terms says:

`S_n=(a_1(1-r^n))/(1-r)\ (r!=1)`

Substituting our values:


`=1.84467xx10^19\ "grains"`

Each grain weighs `20\ "mg" = 2 × 10^-5\ "kg" ` `= 2 × 10^-8\ "tonnes"`.

So the weight is

`(1.84467 × 10^19) × ` `(2 × 10^-8)\ "tonnes" ` `= 369\ "billion tonnes"`, so of course, the king cannot grant the Prince's wish.

NOTE 1: There are `1000\ "kg"` in one tonne.

NOTE 2: The world annual output of rice today is only `600` million (not billion) tonnes!

NOTE 3: We are using the US/French 'billion' (`10^9`) and not the British 'billion' (`10^12`). [See Short and Long Scales.]

Problem Solver

AI Math Calculator Reviews

This tool combines the power of mathematical computation engine that excels at solving mathematical formulas with the power of GPT large language models to parse and generate natural language. This creates math problem solver thats more accurate than ChatGPT, more flexible than a calculator, and faster answers than a human tutor. Learn More.

Tips, tricks, lessons, and tutoring to help reduce test anxiety and move to the top of the class.