Skip to main content
Search IntMath

2. Acceleration (`v`-`t`) Graphs

by M. Bourne

Acceleration is the change in velocity per time.

A common unit for acceleration is `"ms"^-2`. An acceleration of `7\ "ms"^-2` means that in each second, the velocity increases by `7\ "ms"^-1` (also written as `7\ "m/s"`).

We can find the acceleration by using the expression:

`text(acceleration)=text(change in velocity)/text(change in time`

We can write the above using the equivalent


where the Greek letter `Δ` (Delta) means "change in".

In other words, the slope of the velocity graph tells us the acceleration.

The Area Under the `v`-`t` Graph

A very useful aspect of these graphs is that the area under the v-t graph tells us the distance travelled during the motion.

This concept is important when we find areas under curves later in the integration chapter.

Example 1

A particle in a generator is accelerated from rest at the rate of `55\ "ms"^-2`.

a. What is the velocity at `t = 3\ "s"`?

b. What is the acceleration at `t = 3\ "s"`?

c. What is the distance travelled in `3` seconds?

d. Graph the acceleration (as a v - t graph) for `0 ≤ t ≤ 3\ "s"`.


a. Velocity `= 55 × 3 = 165\ "ms"^-1`

b. The acceleration is a constant `55\ "ms"^-2`, so at `t = 3\ "s"`, the acceleration will be `55\ "ms"^-2`.

c. The distance travelled in `3` seconds is `165 × 1.5 = 247.5\ "m"`. We obtain this from the area under the line between `0` and `3` (i.e. the area of the shaded triangle below).

d. Note in the graph that we have velocity on the vertical axis, and the units are m/s.

The graph finishes at (3, 165).

distance is area under a triangle

Recall: Area of a trapezoid

NOTE: A trapezoid has one pair of parallel sides. (It's called a "trapezium" in British English.)

A trapezoid (trapezium), parallel sides `a` and `b`, height `h`.

We find the area of a trapezoid by simply finding the average of the two parallel sides, and multiplying by the distance between them (usually called the "height"):


We'll make use of this result in the next question.

Example 2

A body moves as described by the following v-t graph.

math expression

a) Describe the motion.

b) What is the distance travelled during the motion?

c) What is the average speed for the motion?


a) From `t = 0` to `2`, the acceleration was `a=(Deltav)/(Deltat)=3/2=1.5\ text(ms)^-2`

From `t = 2` to `5`, the acceleration was `0\ "ms"^-1`.

The body was neither speeding up nor slowing down.

From `t = 5` to `8`, the acceleration was `a=(Deltav)/(Deltat)=(-3)/3=-1\ text(ms)^-2`

The body was slowing down, so the acceleration was negative.

b) The distance travelled is the area of the trapezoid (trapezium).



`=16.5\ text(m)`

c) `text(average speed)=text(distance travelled)/text(time taken)`


`=2.1\ text(ms)^-1`

Problem Solver

AI Math Calculator Reviews

This tool combines the power of mathematical computation engine that excels at solving mathematical formulas with the power of GPT large language models to parse and generate natural language. This creates math problem solver thats more accurate than ChatGPT, more flexible than a calculator, and faster answers than a human tutor. Learn More.

Tips, tricks, lessons, and tutoring to help reduce test anxiety and move to the top of the class.