`(9x^2-16)/(x+1)-:(4-3x)`

Dividing by `(4 − 3x)` is the same as multiplying by `1/(4 − 3x)`.

(To see why, think about this example: dividing by 2 is the same as multiplying by `1/2`.)

`(9x^2-16)/(x+1)xx1/(4-3x)`

We factor the `(9x^2− 16)` and get `(3x + 4)(3x − 4)` using the Difference of Squares that we learned before.

`((3x+4)(3x-4))/(x+1)xx1/(4-3x)`

We next use the following useful trick:

`(4 − 3x) = −(3x − 4)`

(To see why this works, just multiply out the right hand side.)

`((3x+4)(3x-4))/(x+1)xx1/-(3x-4)`

After cancelling, we are left with a factor of (−1) from the cancelled fraction and this negative is placed out the front for convenience.

`=-(3x+4)/(x+1)`

So

`(9x^2-16)/(x+1)-:(4-3x)=-(3x+4)/(x+1)`