4. The Sum and Difference of Cubes

We came across these expressions earlier (in the section Special Products involving Cubes):

x3 + y3 = (x + y)(x2xy + y2) [Sum of two cubes]

x3y3 = (xy)(x2 + xy + y2) [Difference of 2 cubes]

Where do these come from? If you multiply out the right side of each, you'll get the left side of the equation.

Note: We cannot factor the right hand sides any further.

We use the above formulas to factor expressions involving cubes, as in the following example.


Factor 64x3 + 125


We use the Sum of 2 Cubes formula given above.

64x3 + 125

= (4x)3 + (5)3

= (4x + 5)[(4x)2 − (4x)(5) + (5)2]

= (4x + 5)(16x2 − 20x + 25)

As mentioned above, we cannot factor the expression in the second bracket any further. It looks like it could be factored to give (4x-5)2, however, when we expand this it gives:

(4x − 5)2 = 16x2 − 40x + 25

This "perfect square trinomial" is not the same as the expression we obtained when factoring the sum of 2 cubes.



(1) x3 + 27

(2) 3m3 − 81


Search IntMath, blog and Forum

Online Algebra Solver

This algebra solver can solve a wide range of math problems.

Algebra Lessons on DVD


Easy to understand algebra lessons on DVD. See samples before you commit.

More info: Algebra videos

The IntMath Newsletter

Sign up for the free IntMath Newsletter. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

Given name: * required

Family name:

email: * required

See the Interactive Mathematics spam guarantee.