# 8. Differentiation of Implicit Functions

by M. Bourne

We meet many equations where *y* is not expressed
explicitly in terms of *x* only, such as:

y^{4}+ 2x^{2}y^{2 }+ 6x^{2}= 7

You can see several examples of such expressions in the Polar Graphs section.

It is usually difficult, if not impossible, to
solve for *y* so that we can then find `(dy)/(dx)`.

We need to be able to find derivatives of such
expressions to find the rate of change of *y* as
*x* changes. To do this, we need to know **implicit
differentiation**.

Let's learn how this works in some examples.

### Example 1

Find the expression for `(dy)/(dx)` if *y*^{4} + *x*^{5} −
7*x*^{2} −
5*x*^{-1 }= 0.

Answer

*y*^{4}
+ *x*^{5} −
7*x*^{2} −
5*x*^{-1} = 0

We see how to derive this expression one part at a time. We just derive expressions as we come to them from left to right.

(In this example we could easily express the function in terms of *y* only, but this is intended as a relatively simple first example.)

**Part A: Find the derivative with respect to**
*x*** of:
***y*^{4}

To differentiate this expression, we regard *y* as a
function of *x* and use the power rule.

**Basics:** Observe the following pattern of
derivatives:

`d/(dx)y=(dy)/(dx)`

`d/(dx)y^2=2y(dy)/(dx)`

`d/(dx)y^3=3y^2(dy)/(dx)`

It follows that:

`d/(dx)y^4=4y^3(dy)/(dx)`

**Part B: Find the derivative with respect to**
*x***of:**

x^{5}− 7x^{2}− 5x^{-1}

This is just ordinary differentiation:

`d/(dx)(x^5-7x^2-5x^-1)` `=5x^4-14x+5x^-2`

**Part C:**

On the right hand side of our expression, the derivative of zero is zero. ie

`d/(dx)(0)=0`

Now, combining the results of parts A, B and C:

`4y^3(dy)/(dx)+5x^4-14x+5x^-2=0`

Next, solve for *dy/dx* and the required expression is:

`(dy)/(dx)=(-5x^4+14x-5x^-2)/(4y^3`

Get the Daily Math Tweet!

IntMath on Twitter

### Example 2

Find the slope of the tangent at the point `(2,-1)` for the curve:

2

y+ 5 −x^{2}−y^{3 }= 0.

Answer

Working left to right, we have:

Derivative of `2y`:

`d/(dx)2y=2(dy)/(dx)`

Derivative of `5` is `0`.

Derivative of *x*^{2} is `2x`.

Derivative of *y*^{3}:

`d/(dx)y^3=3y^2(dy)/(dx)`

Putting it together, implicit differentiation gives us:

`2(dy)/(dx)-2x-3y^2(dy)/(dx)=0`

Collecting like terms gives:

`(2-3y^2)(dy)/(dx)=2x`

So

`(dy)/(dx)=(2x)/(2-3y^2)`

Now, when `x = 2` and `y = -1`,

`(dy)/(dx)=(2(2))/(2-3(-1)^2)`

`=4/-1`

`=-4`

So the slope of the tangent at `(2,-1)` is `-4`.

Let's see what we have done. We graph the curve

`2y+5-x^2-y^3=0`

and graph the tangent to the curve at `(2, -1)`. We see that indeed the slope is `-4`.

It works!

Easy to understand math videos:

MathTutorDVD.com

### Example 3 (Involves Product Rule)

Find the expression for `(dy)/(dx)` if:

y^{4}+ 2x^{2}y^{2 }+ 6x^{2}= 7

(This is the example given at the top of this page.)

Answer

To make life easy, we will break this question up into parts.

### Part A:

**Find the derivative with respect to** *x***of:** *y*^{4}

`d/(dx)y^4=4y^3(dy)/(dx)`

### Part B:

**Find the derivative with respect to** *x***of 2 x^{2}y^{2}**

Now to find the derivative of 2*x*^{2}*y*^{2} with respect to
*x* we must recognise that it is a **product***.*

If we let *u* = 2*x*^{2} and *v* = *y*^{2} then we have:

`d/(dx)(2x^2y^2)=u(dv)/(dx)+v(du)/(dx)`

`=(2x^2)(2y(dy)/(dx))+` `(y^2)(4x)`

`=4x^2y(dy)/(dx)+4xy^2`

### Part C:

Now

`d/(dx)6x^2=12x`

and

`d/(dx)(7)=0`

**Now to find **`(dy)/(dx)` **for the
whole expression:**

`y^4+2x^2y^2+6x^2=7`

Working left to right, using our answers from above:

`[4y^3(dy)/(dx)]+[4x^2y(dy)/(dx)+4xy^2]+` `[12x]=0`

This gives us, on collecting terms:

`(4y^3+4x^2y)(dy)/(dx)=-4xy^2-12x`

So we have the required expression:

`(dy)/(dx)=(-4xy^2-12x)/(4y^3+4x^2y)=(-xy^2-3x)/(y^3+x^2y)`

Easy to understand math videos:

MathTutorDVD.com

### Search IntMath, blog and Forum

### Online Algebra Solver

This algebra solver can solve a wide range of math problems.

Go to: Online algebra solver

### Calculus Lessons on DVD

Math videos by MathTutorDVD.com

Easy to understand calculus lessons on DVD. See samples before you commit.

More info: Calculus videos

### The IntMath Newsletter

Sign up for the free **IntMath Newsletter**. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!