2. Maclaurin Series

By M. Bourne

In the last section, we learned about Taylor Series, where we found an approximating polynomial for a particular function in the region near some value `x = a`.

We now take a particular case of Taylor Series, in the region near `x = 0`. Such a polynomial is called the Maclaurin Series.

The infinite series expansion for `f(x)` about `x = 0` becomes:

`f(x)~~f(0)+f’(0)x` `+(f’’(0))/(2!)x^2` `+(f’’’(0))/(3!)x^3` `+(f^("iv")(0))/(4!)x^4` `+...`

`f’(0)` is the first derivative evaluated at `x = 0`, `f’’(0)` is the second derivative evaluated at `x = 0`, and so on.

[Note: Some textbooks call the series on this page "Taylor Series" (which they are, too), or "series expansion" or "power series".]

Example 1: Expanding sin x

Find the Maclaurin Series expansion for `f(x) = sin x`.

We plot our answer

`f(x)=x-1/6x^3` `+1/120x^5` `-1/5040x^7+...`

to see if the polynomial is a good approximation to `f(x) = sin x`.

We observe that our polynomial (in grey) is a good approximation to `f(x) = sin x` (in green) near `x = 0`. In fact, it is quite good between -π ≤ x ≤ π.

Example 2: Expanding `e^x`

Find the Maclaurin Series expansion of `f(x) = e^x`.

Here's a graph of the answer we just obtained, and the original `f(x) = e^x` graph:

We can see the approximation is very close to the original `f(x)=e^x` in the region `-2 < x < 2.5`.


Find the Maclaurin Series expansion of `cos x`.

Here's a graph showing the answer we just obtained, and the original `f(x) = cos(x)` graph:

Once again, we observe that our polynomial (in grey) is a good approximation to `f(x) = cos x` (in green) between -π ≤ x ≤ π.

Continues below

Finding Pi Using Infinite Series

In the 17th century, Leibniz used the series expansion of arctan x to find an approximation of π.

We start with the first derivative:

`d/(dx)arctan\ x=1/(1+x^2)`

The value of this derivative when `x = 0` is `1`. That is, `f’(0)=1`.

Similarly for the subsequent derivatives:

`d^2/(dx^2)arctan\ x=-(2x)/((1+x^2)^2`


`d^3/(dx^3)arctan\ x=2(3x^2-1)/((1+x^2)^3`


`d^4/(dx^4)arctan\ x=-24x(x^2-1)/((1+x^2)^4`


`d^5/(dx^5)arctan\ x=24(5x^4-10x^2+1)/((1+x^2)^5`


Now we can substitute into the Maclaurin Series formula:

`arctan\ x ~~0+(1)x+0/2x^2-2/(3!)x^3+0/(4!)x^4+24/(5!)x^5+...`


Considering that (see the 45-45 triangle)

`arctan 1=pi/4`

we can substitute `x = 1` into the above expression and get the following expansion for π


All very well, but it was not a good way to find the value of π because this expansion converges very slowly.

Even after adding 1000 terms, we don't have 3 decimal place accuracy.


(We know now that π = 3.141 592 653 5..., and we know many other more efficient ways to find `pi`.)

Here's the graph of y = arctan x (in green) compared to the polynomial we just found (in grey).


Search IntMath, blog and Forum

Online Algebra Solver

This algebra solver can solve a wide range of math problems.

Calculus Lessons on DVD


Easy to understand calculus lessons on DVD. See samples before you commit.

More info: Calculus videos

The IntMath Newsletter

Sign up for the free IntMath Newsletter. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

Given name: * required

Family name:

email: * required

See the Interactive Mathematics spam guarantee.