# 4. The Binomial Theorem

by M. Bourne

A **binomial ** is an algebraic expression containing 2 terms. For example, (*x* + *y*) is a binomial.

We sometimes need to expand binomials as follows:

(*a* + *b*)^{0} = 1

(*a* + *b*)^{1} = *a* + *b*

(*a* + *b*)^{2} = *a*^{2}
+ 2*ab* + *b*^{2}

(*a* + *b*)^{3} = *a*^{3}
+ 3*a*^{2}*b* + 3*ab*^{2} +
*b*^{3}

(*a* + *b*)^{4} = *a*^{4}
+ 4*a*^{3}*b* + 6*a*^{2}*b*^{2}
+ 4*ab*^{3} + *b*^{4}

(*a* + *b*)^{5} = *a*^{5}
+ 5*a*^{4}*b* + 10*a*^{3}*b*^{2}
+ 10*a*^{2}*b*^{3} + 5*ab*^{4}
+ *b*^{5}

Clearly, doing this by direct multiplication gets quite tedious and can be rather difficult for larger powers or more complicated expressions.

## Pascal's Triangle

We note that the coefficients (the numbers in front of each term) follow a pattern. [This was noticed long before Pascal, by the Chinese.]

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

You can use this pattern to form the coefficients, rather than multiply everything out as we did above.

## The Binomial Theorem

We use the **binomial theorem** to help us expand binomials
to any given power without direct multiplication. As we have seen, multiplication can be
time-consuming or even not possible in some cases.

## Properties of the Binomial Expansion (*a* + *b*)^{n}

- There are `n + 1` terms.
- The first term is
*a*and the final term is^{n}*b*.^{n}

- Progressing from the first term to the last, the exponent
of
*a*decreases by `1` from term to term while the exponent of*b*increases by `1`. In addition, the sum of the exponents of*a*and*b*in each term is*n*.

- If the coefficient of each term is multiplied by the
exponent of
*a*in that term, and the product is divided by the number of that term, we obtain the coefficient of the next term.

## General formula for (*a* + *b*)^{n}

First, we need the following definition:

**Definition: ***n*! represents the product of the first *n*
positive integers i.e.

n! =n(n− 1)(n− 2) ... (3)(2)(1)

We say *n*! as "*n* factorial".

### Example 1 - factorial values

Here are some factorial values:

(a) `3! = (3)(2)(1) = 6`

(b) `5! = (5)(4)(3)(2)(1) = 120`

(c) `(4!)/(2!)=((4)(3)(2)(1))/((2)(1))=12`

**Note:** `(4!)/(2!)` cannot be cancelled down to `2!`.

## Factorial Interactive

**Instructions:** You can use the following interactive to find the factorial of any positive integer up to 30.

For numbers greater than `22!`, you'll see output something like this: `2.652528e+32`. The "`e`" stands for exponential (base `10` in this case), and the number has value `2.652528 xx 10^32`.

## Binomial Theorem Formula

Based on the binomial properties, the binomial theorem states
that the following **binomial formula** is valid for
all positive integer values of *n*:

`(a+b)^n=` `a^n+na^(n-1)b` `+(n(n-1))/(2!)a^(n-2)b^2` `+(n(n-1)(n-2))/(3!)a^(n-3)b^3` `+...+b^n`

This can be written more simply as:

(*a* + *b*)* ^{n}* =

*C*

^{n}_{0}

*a*

*+*

^{n}*C*

^{n}_{1}

*a*

^{n − 1}

*b*+

*C*

^{n}_{2}

*a*

^{n − 2}

*b*

^{2}+

*C*

^{n}_{3}

*a*

^{n − 3}

*b*

^{3}+ ... +

*C*

^{n}

_{n}b^{n}

We can use the `{::}^nC_r` button on our calculator to find these values.

This can also be written *nCr*.

## Binomial Theorem Interactive

The following interactive lets you expand your own binomial expressions. It shows all the expansions from `n=0` up to the power you have chosen.

In the **first line** of each expansion, you'll see the numbers from Pascal's Triangle written within square brackets, [ ].

The **second line** of each expansion is the result after tidying up.

**Instructions:** You can use letters or numbers within the brackets. The maximum power you can use is 6.

Here are the expansions:

### Example 2

Using the binomial theorem, expand (*x* + 2)^{6}.

### Example 3

Using the binomial theorem, expand (2*x* + 3)^{4}

### Example 4

Using the binomial theorem, find the first four terms of the expansion `(2a-1/x)^11`

**Binomial Series**

From the binomial formula, if we
let *a* = 1 and * b =
x,* we can also obtain the **binomial
series** which is valid for any real number *n* if
|*x*| < 1.

`(1+x)^n``=1+nx+(n(n-1))/(2!)x^2``+(n(n-1)(n-2))/(3!)x^3``+...`

**NOTE (1):** This is an **infinite series**, where the
**binomial theorem** deals with a finite expansion.

**NOTE (2):** We cannot use the
`{::}^nC_r` button for the **binomial series.** The `{::}^nC_r` button can only be used with positive
integers.

### Example 5

Using the binomial series, find the first four terms of the expansion `sqrt(4+x^2)`.

Here is the graph of what we just did in Example 5. The darker colored curve is

`y_1=sqrt(4+x^2)`

The lighter colored one is the first 4 terms of the series we found, that is:

`y_2=2+x^2/4-x^4/64+x^6/512`.

The approximation is quite good between −2 < *x* < 2, but we would need to take many more terms for a good approximation beyond these bounds.

### Search IntMath, blog and Forum

### Online Algebra Solver

This algebra solver can solve a wide range of math problems.

Go to: Online algebra solver

### Algebra Lessons on DVD

Easy to understand algebra lessons on DVD. See samples before you commit.

More info: Algebra videos

### The IntMath Newsletter

Sign up for the free **IntMath Newsletter**. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!