Skip to main content

Home | Math Display Experiments | MathJax and KaTeX Comparison

KaTeX and MathJax Comparison Demo

Page by Murray Bourne, Last updated: 07 Jul 2019

Process with KaTex Processed by MathJax

Time to process page = 0 ms

Page processed with MathJax

Repeating fractions

\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} \equiv 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }

Summation notation

\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)

Sum of a Series

I broke up the next two examples into separate lines so it behaves better on a mobile phone. That's why they include \displaystyle.

\displaystyle= \left(\sum_{i=1}^{k}i\right) +(k+1)
\displaystyle= \frac{k(k+1)}{2}+k+1
\displaystyle= \frac{k(k+1)+2(k+1)}{2}
\displaystyle= \frac{(k+1)(k+2)}{2}
\displaystyle= \frac{(k+1)((k+1)+1)}{2}

Product notation

\displaystyle 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \displaystyle \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \displaystyle\text{ for }\lvert q\rvert < 1.

Inline math

And here is some in-line math: k_{n+1} = n^2 + k_n^2 - k_{n-1}, followed by some more text.

Inline math uses

<span class="math">...</span>

rather than a div.

Greek Letters

\Gamma\ \Delta\ \Theta\ \Lambda\ \Xi\ \Pi\ \Sigma\ \Upsilon\ \Phi\ \Psi\ \Omega

\alpha\ \beta\ \gamma\ \delta\ \epsilon\ \zeta\ \eta\ \theta\ \iota\ \kappa\ \lambda\ \mu\ \nu\ \xi \ \omicron\ \pi\ \rho\ \sigma\ \tau\ \upsilon\ \phi\ \chi\ \psi\ \omega\ \varepsilon\ \vartheta\ \varpi\ \varrho\ \varsigma\ \varphi


\gets\ \to\ \leftarrow\ \rightarrow\ \uparrow\ \Uparrow\ \downarrow\ \Downarrow\ \updownarrow\ \Updownarrow
\Leftarrow\ \Rightarrow\ \leftrightarrow\ \Leftrightarrow\ \mapsto\ \hookleftarrow
\leftharpoonup\ \leftharpoondown\ \rightleftharpoons\ \longleftarrow\ \Longleftarrow\ \longrightarrow
\Longrightarrow\ \longleftrightarrow\ \Longleftrightarrow\ \longmapsto\ \hookrightarrow\ \rightharpoonup
\rightharpoondown\ \leadsto\ \nearrow\ \searrow\ \swarrow\ \nwarrow


\surd\ \barwedge\ \veebar\ \odot\ \oplus\ \otimes\ \oslash\ \circledcirc\ \boxdot\ \bigtriangleup
\bigtriangledown\ \dagger\ \diamond\ \star\ \triangleleft\ \triangleright\ \angle\ \infty\ \prime\ \triangle


\int u \frac{dv}{dx}\,dx=uv-\int \frac{du}{dx}v\,dx
f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x}
\oint \vec{F} \cdot d\vec{s}=0

Lorenz Equations

\begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{aligned}

Cross Product

This works in KaTeX, but the separation of fractions in this environment is not so good.

\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix}

Here's a workaround: make the fractions smaller with an extra class that targets the spans with "mfrac" class (makes no difference in the MathJax case):

\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix}


\hat{x}\ \vec{x}\ \ddot{x}

Stretchy brackets


Evaluation at limits


Case definitions

f(n) = \begin{cases} \frac{n}{2}, & \text{if } n\text{ is even} \\ 3n+1, & \text{if } n\text{ is odd} \end{cases}

Maxwell's Equations

\begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}

These equations are quite cramped. We can add vertical spacing using (for example) [1em] after each line break (\\). as you can see here:

\begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\[1em] \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\[0.5em] \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\[1em] \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}


Definition of combination:

\frac{n!}{k!(n-k)!} = {^n}C_k
{n \choose k}

Fractions on fractions


n-th root



\begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{pmatrix}
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}


f(x) = \sqrt{1+x} \quad (x \ge -1)
f(x) \sim x^2 \quad (x\to\infty)

Now with punctuation:

f(x) = \sqrt{1+x}, \quad x \ge -1
f(x) \sim x^2, \quad x\to\infty

Try again?

Process with KaTex Processed by MathJax

Background and explanation

Read more about KaTeX and the examples above here:

KaTeX – a new way to display math on the Web

See also: ASCIIMathML, KaTeX and MathJax Demo

Search IntMath, blog and Forum

Search IntMath