Using the Sum of 2 Cubes formula, we obtain:

x^{3} + 27

= (x)^{3} + (3)^{3} = (x + 3)[(x)^{2} − (x)(3) + (3)^{2}] = (x + 3)(x^{2 } − 3x + 9)

= (x)^{3} + (3)^{3}

= (x + 3)[(x)^{2} − (x)(3) + (3)^{2}]

= (x + 3)(x^{2 } − 3x + 9)