Now, taking each term in turn:

`d/(dx)(13x^4)=52x^3` (using `d/(dx)x^n=nx^(n-1)`)

`d/(dx)(-6x^3)=-18x^2` (using `d/(dx)x^n=nx^(n-1)`)

`d/(dx)(-x)=-1` (since `-x = -(x^1)` and so the derivative will be `-(x^0) = -1`)

`d/(dx)(-1)=0` (since `(dc)/(dx)=0`)

So

`(dy)/(dx)=52x^3-18x^2-1`