NOTE: This has an exponent which is variable. We cannot use our formula

`d/dx x^n=nx^(n-1)`

from before.

Now

`ln\ y=ln[(sin x)^x]=x\ ln(sin x)`

So

`1/y(dy)/(dx)=x(cos\ x)/(sin\ x)+ln(sin\ x)(1)`

Multiplying through by `y` gives:

`(dy)/(dx)=y(x\ cot\ x+ln(sin\ x))`

`=(sin\ x)^x(x\ cot\ x+ln(sin\ x))`

Get the Daily Math Tweet!
IntMath on Twitter