This is an implicit function.

`x+y=tan^-1(x^2+3y)`

`1+(dy)/(dx)` `=1/(1+(x^2+3y)^2)(2x+3(dy)/(dx))`

Multiplying throughout by 1 + (x2 + 3y)2 gives:

`(1+(x^2+3y)^2)+` `(1+(x^2+3y)^2)(dy)/(dx)` `=2x+3(dy)/(dx)`

`(dy)/(dx)(1+(x^2+3y)^2 -3)` `=2x-(1+(x^2+3y)^2)`

`(dy)/(dx)=` `(2x-1-(x^2+3y)^2)/(-2+(x^2+3y)^2)`

Get the Daily Math Tweet!
IntMath on Twitter