Explanation 1:

Probability of 3 cards having the same denomination: `4/52 xx 3/51 xx 2/50 xx 13 = 1/425`.

(There are 13 ways we can get 3 of a kind).

The probability that the next 2 cards are a pair: `4/49 xx 3/48 xx 12 = 3/49`

(There are 12 ways we can get a pair, once we have already got our 3 of a kind).

The number of ways of getting a particular sequence of 5 cards where there are 3 of one kind and 2 of another kind is:

`(5!)/(3!xx2!)=10`

So the probability of a full house is

`1/425 xx 3/49 xx 10 ` `= 6/(4,165)` `=0.001\ 440\ 6`

Explanation 2:

Number of ways of getting a full house:

`(C(13,1)xxC(4,3))` `xx(C(12,1)xxC(4,2))`

`=(13!)/(1!xx12!)` `xx(4!)/(3!xx1!)` `xx(12!)/(1!xx11!)` `xx(4!)/(2!xx2!)`

`=3744`

Number of possible poker hands

`=C(52,5)` `=(52!)/(47!xx5!)` `=2,598,960`

So the probability of a full house is given by:

`P("full house")`

`="ways of getting full house"/"possible poker hands"`

`= (3,744)/(2,598,960)`

`=0.001\ 441`