10. Partial Derivatives

by M. Bourne

So far in this chapter we have dealt with functions of single variables only. However, many functions in mathematics involve 2 or more variables. In this section we see how to find derivatives of functions of more than 1 variable.

This section is related to, but is not the same as Implicit Differentiation that we met earlier.

Example 1 - Function of 2 variables

Here is a function of 2 variables, x and y:

F(x,y) = y + 6 sin x + 5y2

To plot such a function we need to use a 3-dimensional co-ordinate system.

Graph of 3D surface - partial differentiation

Partial Differentiation with respect to x

"Partial derivative with respect to x" means "regard all other letters as constants, and just differentiate the x parts".

In our example (and likewise for every 2-variable function), this means that (in effect) we should turn around our graph and look at it from the far end of the y-axis. We are looking at the x-z plane only.

partial derivaitve with respect to x

We see a sine curve along the x-axis and this comes from the "6 sin x" part of our function F(x,y) = y + 6 sin x + 5y2. The y parts are regarded as constants (in fact, 0 in this case).

Now for the partial derivative of

F(x,y) = y + 6 sin x + 5y2

with respect to x:

`(del F)/(del x)=6\ cos\ x`

The derivative of the 6 sin x part is 6 cos x. The derivative of the y-parts is zero since they are regarded as constants.

Notice that we use the curly symbol to denote "partial differentiation", rather than "`d`" which we use for normal differentiation.

Partial Differentiation with respect to y

The expression

Partial derivative with respect to y

means

"Regard all other letters as constants, just differentiate the y parts".

As we did above, we turn around our graph and look at it from the far end of the x-axis. So we see (and consider things from) the y-z plane only.

We see a parabola. This comes from the y2 and y terms in F(x,y) = y + 6 sin x + 5y2. The "6 sin x" part is now regarded as a constant.

partial derivative with respect to y - plot

 

Now for the partial derivative of

F(x,y) = y + 6 sin x + 5y2

with respect to y.

`(delF)/(dely)=1+10y`

The derivative of the y-parts with respect to y is 1 + 10y. The derivative of the 6 sin x part is zero since it is regarded as a constant when we are differentiating with respect to y.

Second Order Partial Derivatives

We can find 4 different second-order partial derviatives. Let's see how this works with an example.

Example 2

For the function we used above, F(x,y) = y + 6 sin x + 5y2, find each of the following:

(a) `(del^2F)/(delydelx)`

(b) `(del^2F)/(delxdely)`

(c) `(del^2F)/(delx^2)`

(d) `(del^2F)/(dely^2)`

Didn't find what you are looking for on this page? Try search:

Online Algebra Solver

This algebra solver can solve a wide range of math problems. (Please be patient while it loads.)

Ready for a break?

 

Play a math game.

(Well, not really a math game, but each game was made using math...)

The IntMath Newsletter

Sign up for the free IntMath Newsletter. Get math study tips, information, news and updates each fortnight. Join thousands of satisfied students, teachers and parents!

Given name: * required

Family name:

email: * required

See the Interactive Mathematics spam guarantee.

Share IntMath!

Calculus Lessons on DVD

 

Easy to understand calculus lessons on DVD. See samples before you commit.

More info: Calculus videos

Loading...
Loading...