# Table of Derivatives

Following are the derivatives we met in previous chapters:

and this chapter,

## 1. Powers of x

### General formula

d/dx u^n =n u^(n-1) (du)/dx, where u is a function of x.

### Particular cases and examples

d/dx c =0

d/dx x =1

d/dx x^n =n x^(n-1)

d/dx x^7 =7 x^6

## 2. Trigonometric Functions

### Trigonometry General formulas (a)

d/dx sin u = (cos u)(du)/dx

d/dx cos u = - (sin u) (du)/dx

d/dx tan u = (sec^2 u) (du)/dx

### Particular cases and examples

d/dx sin 3x = 3 cos 3x

d/dx sin x^2 =\ 2x\ cos x^2

d/dx sin x = cos x

d/dx cos x = - sin x

d/dx cos^3 x = - 3\ sin^2 x

d/dx tan x = sec^2 x

d/dx 5tan 7x = 35\ sec^2 7x

### Trigonometry General formulas (b) - reciprocals

d/dx csc u = (-csc u cot u)(du)/dx

d/dx sec u = (sec u tan u)(du)/dx

d/dx cot u = (- csc^2 u)(du)/dx

### Particular cases and examples

d/dx csc x = -csc x cot x

d/dx sec x = sec x tan x

d/dx cot x = - csc^2 x

## Exponential and Logarithmic Functions

### General formulas

d/dx e^u = (e^u)(du)/dx

d/dx b^u = (b^u ln(b))(du)/dx

d/dx ln(u) = (1/u)(du)/dx = (u')/u

### Particular cases and examples

d/dx e^x = e^x

d/dx 3^x = 3^x ln(3) = 1.0986 xx 3^x

d/dx ln(x) = 1/x

d/dx ln(x^4) = 4/x

d/dx ln(5x) = 1/x

## Inverse Trigonometric Functions

### General formulas

d/dx arcsin u = (1 / sqrt(1 - u^2))(du)/dx

d/dx "arccsc"\ u = (-1 /(|u| sqrt(u^2 - 1)))(du)/dx

d/dx arccos u = ( -1 /sqrt(1 - u^2))(du)/dx

d/dx "arcsec" u = (1/(|u| sqrt(u^2 - 1)))(du)/dx

d/dx arctan u = (1/(1 + u^2))(du)/dx

d/dx "arccot"\ u = (-1/(1 + u^2))(du)/dx

### Particular cases

d/dx arcsin x = 1 / sqrt(1 - x^2)

d/dx "arccsc"\ x = -1 /(|x| sqrt(x^2 - 1))

d/dx arccos x = -1 /sqrt(1 - x^2)

d/dx "arcsec" x = 1/(|x| sqrt(x^2 - 1))

d/dx arctan x = 1/(1 + x^2)

d/dx "arccot"\ x = -1/(1 + x^2)

## Hyperbolic Functions

The hyperbolic functions are defined as follows:

sinh x = (e^x-e^(-x))/2

cosh x = (e^x+e^(-x))/2

tanh x = (sinh x)/(cosh x) = (e^x - e^(-x))/(e^x + e^(-x))

"csch"\ x = 1/(sinh x)

"sech"\ x = 1/(cosh x)

coth x = 1/(tanh x)

### General formulas

d/dx sinh u = (cosh u )(du)/dx

d/dx "csch" u = (- coth u "csch" u)(du)/dx

d/dx cosh u = (sinh u)(du)/dx

d/dx "sech" u = (- tanh u "sech" u)(du)/dx

d/dx "tanh" u = (1 - tanh^2 u)(du)/dx

d/dx coth u = (1 - coth^2 u )(du)/dx

### Particular cases

d/dx sinh x = cosh x

d/dx "csch"\ x = - coth x "csch"\ x

d/dx cosh x = sinh x

d/dx "sech"\ x = - tanh x "sech"\ x

d/dx tanh x = 1 - tanh2 x

d/dx coth x = 1 - coth2 x

top

### Online Algebra Solver

This algebra solver can solve a wide range of math problems.

### Calculus Lessons on DVD

Easy to understand calculus lessons on DVD. See samples before you commit.